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ABSTRACTS /94

"Several problems in the aerodynamics of Interkosmos and Xosmos
Serles satellites," B.M. Kovtunenko, A.I. Vasil'yeva, V.F. Kameko,
Yu.T. Reznichenko, and E.P. Yaskevich, Kosmicheskiye issledovaniya
na Ukralne [Space research in the Ukralne], No. 2, "Naukova dumka,"
Klev, 1973, pp. 1 - 15.

A method for determining aerodynamle characteristics of a
satellite in sun-synchronous orbit is presented, with allcwance
for the Instantaneous position and orientation in orbit.

Based on the deceleration parametersaof the AES Interkosmos-1,
Interkosmos-4, Kosmos-166, and Kosmos-230, using local values of
the ceoefficient Cx at the orbital perigee, the upper-atmospheric
densities were determined in the altitude range h = 200 - 320 km
corresponding to the mean level of solar activity. A comparison
is given of the resulting densities with the data from the CIRA-65
model. The influence of the semiannual effect In the fluctuations
of the upper-atmospheric density appeared in the experimental data.

Bibliography: 13 entries. Figures: 8. Tables: 3.

"Selectionof extremal trajectories for the launch of AES from orbit,"

issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev, 1973, pp. .
,16“— 3? .

A method for selecting control programs for a space object in
the orbital departure section of AES providing, for specified fuel
regserves onboard the object, the extremal value of some functional
is proposed; the functional may be taken as the parameters of the
endpolint. of the powered sectlon or the parameters of the initial
orbit, or any other functional that depends on these parameters.

The analysis was conducted for the case of the Newtonian
representation of the Earth gravity field potential with certain
simplifications for the powered trajJectory section.

Bibliography: 8 entries.

M"Analysisof problems of spacecralft navigation and control," V.V. Gor-
buntsov, V.G. Komarov, V.F..lager'!, G.L. Madatov, and A.T. Onishchenko,

 Kosmichesklye issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev,
1973, pp. 34 - 8.

A method of optimizing programming functlons 1s desecribed,
baged on the criterion of the maximum response, which consists of

iv



constructing the absolutely-minimum Lyapunov-Bellman function
as the envelope of a (n - l)-parametric family of partial integrals
traversing the point (x5, tg) of the phase space X = {xp}.

Problems of optimizing the control for cases of spacecraft
motlion along elliptical orbits and when entering a planetary
atmosphere are examined, using the Pontryagin principle of the
maximum. The variational boundary value problem is solved with
optimization of the functional within a certain interval of
motion.

Bibliography: 10 entries. Figures: 2.

"Usewofithe finite-rotation vector in onboard digital computers
for determining spacecraft orientation," A.P. Panov, Kosmicheskiye
issledovaniya na Ukraine, No. 2, "Naukova dumka," Kiev, 1973,

PP. Lo - “56{

The possibility of using in onboard digital computers the
finite-rotation wveector for determining the orientatlion of space-
eraft (3C) based on readings of integrating rate transducers hard-
mounted on the 3¢ 1is examined.

It is shown that determining the SC orientation by using the
finite-rotation vector is preferable from the standpolnt of attaining
the smallest volume of computatlions in the onboard digital computer,
than the use of quaternions in the form of Rodrig-Hamilton parameters,
since the gain in computatlion volume is nearly 30%.

Recursion algorithms of the first and second order of precision
are presented for computation in the digital onboard computer of
the projections of the finite-rotation vector, and error estimates
of these algeorithms are given.

Bibllography: 9 entries.
B0perating :economy of spacecraft stabllization systems," N.F. Gerassiiu

yuta, Yu.D. Sheptun, and 5.V. Yaroshevich, Kosmicheskiye issledovaniya
na Ukraine, No. 2, "Naukova dumka," Klev, 1973, pp. 57 _5%.

The possibllity of increaslng the operatlng economy of a
relay system of orilentatlon for a spacecraft moving outside the
atmosphere with or without the presence of a constant perturbing
moment ls examined. Oscillatlons of the system are considered,
wlth reference to the possible nonequality of the impulses of con-
trol moments produced per unit engagements of the actuators (Aw # 0).
For the case when a perturbing moment is acting and Aw # 0, both



simple and complex natural oscillations can be established. The
appropriate selection of Aw mlnimizes the amount of energy expended.

Bibliography: 3 entrles. Figures: 10.

"Problems of oscillations and the stability of motion of multi- /495
dimensional elastlc and elastofluid controlled objects," A.I. Kukh-
tenko, V.V. Udllov, and B.A. Gudymenko, Kosmicheskiye issledovaniya

" na Ukraine, No. 2, "Naukova dumka," Kiev, 1973, pp. 70 - 87

The possibilities of using metheds from the theory of the
representation of groups and the method of decomposition in
solving problems of the control of the motlon of elastollquidiu
obJects are discussed.

As an example illustrating the procedure of applying the theory
of' the representations of groups, the problem of the natural oscil-
lations of an elastic orbital space station is examined. The
forms of natural oscillatlons are presented by symmetry types; the
multiplicities of natural frequencies are found and a decompositdéon
(subdivision of the system into a series of subsystems) of a
mathematical model of the control object is made, on the basis of
symmetry properties.

Bilbliography: 20 entries. PFigures: 3.
"Analysis of natural oscillations of a spacecraft," N.F. Gerasyuta,

Yu.D. Sheptun, and S.V. Yarosheviech, Kosmicheskiye lssledovania na
Ukralne, No. 2, "Naukova dumka," Kiev, 1973, pp. 88 - 106.

Oscillations of an aerodynamically unstable spacecraft with a
relay jet orientation system, moving at the altitude h = 100 - 120
km, and acted on by a constant perturbing moment, are examined.

The effect of the difference in the control impulses and atmos-
pherlic density on the nature of motion is investigated. The

problem is solved by methods of point transformations and the

theory of bifurcations. It 1s shown that with increase in atmos-
pheric density, the multiplicity of complex oscillations decreases,
and the sequence of the onset of bifurcation moments changes. The
stability of simple and complex oscillations 1s proven; a comparisocon
is made of the amounts of energy expended in orientation. It is
shown that the energy consumptlon depends essentially on the
difference of the impulses of the control instants.

Bibliography: 5 entries. Figurés: 10. Tables: 2.
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“Integratioprqf Euler‘s kinematic equations," A.I. Tkachenko,

Kosmicheskiye issledovaniya na Ukraine, No. 2, "Naukova dumka,"
Kiev, 1973, pp. 107 - 11k.

The problem of computing the Euler angles characterizing the
orientation of a spacecraft in space 1s dlscussed. First- and
Second-order algorithms are suggested for integrating the
Euler kinematic equations.

"An algorithm for computing the trajectory of the injection of a
space object into orbilt," A.A. Krasovskly and L.T. Gripp, Kosmiches-
kiye'igsledovaniya'na‘kaaine, No. 2, "Naukova dumka," Ktev, 1973,
PP. 115 - 127,

A universal algorithm for the numerical integration of the
equations of motion of a space object over the Injection trajectory
section is examined.

The algorithm is based on the method of successlve apprexima-
tions and the approximation of the right sides of the differentlal
equations of motion by Interpolational power polynomials. The
trajectory elements were computed by using a reference trajectory
specified in a simple analytic form.

Bibliography: 5 entries. Figures: 3.

"Analytic-numerical method of computing attlitude changes of similar
AES," A.A. Krasovskly, Ye.I. Bushuyev, E.P. Kompaniyets, and A.A.
Vasil'yeva, Kosmichesklye issledovaniya na Ukraine, No. 2, "Naukova
dumka," Kiev, 1973, pp. 128 - 140.

The motion of near Farth satellites for which the prineipal
perturbing factors are the noncentrality of the Earth gravity
field and the atmospheric drag is considered.

An analytic-numerical method of computing the orbital attitude
changes 1s proposed., based on the equaticns of motion in osculating
elements. Perturbations of the elements during a single revolution
of' the AES are determined by flnite formulas, with reference to
the second, third and fourth zonal harmonics of the expansion of
the geopotential, and alsoc with reference té& the atmospheric
drag, described by a dynamic model.

From preliminary estlimates, the errors of the proposed method
caused by the analytic representation of the perturbations of the
orbltal elements do not exceed 5%.

Bibllography: 8 entries. Filgures: 1.
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SEVERAL PROBLEMS IN THE AERODYNAMICS
OF INTERKOSMOS BND KOSMOS SERIES SATELLITES

B.M. Kovtunenko, A.Y., Vasiltyeva, V.F. Kameko,
Yu.T. Beznichenko, and E.P. Yaskevich

Analysis of the parameters of sun-synchronized AES [arti- /3%
ficial earth satellitesg] 1s of definite practlical interest for
aerodynamicists, since for this type of satellite the angle of
attack is a slow-varying parameter and can be determined simply.
As a consequence, full-scale values of aercdynamle characteristics
and the density of the upper atmosphere can be determined more
exactly. These AES include the satellites considered in the
present article, Interkosmos-1, Interkosmos-4, Kosmos-166, and
Kosmos~230, launched into orbit with the parameters indicated
in Table 1. These satellites have ldentlcal geometrical shape
(Fig. 1), formed by a prismatic body with spherical bases, eight
solar battery panels mounted perpendicularly to the longitudinal
axls of the body, and scientific equipment bays carried on a
special platform.

The main factor determining the ballistic lifetime and charac-
teristics of the system of orlientation of satellites with orbital
altitude h < 600 km, is the aerodynamic action of the inecident
flow of rarified upper-atmospheric gas. The purpose of this
article is the analysis of calculated and full-scale experimental
data on the aerodynamlics of Interkosmos satellites.

The aerodynamic characteristics of a body, dimensionless
coefficients of surface forces, are calculated by integration
over the surface of the body A of the forces actling at an elementary
surface area, l1.e., the overall forces and moment will be

P = {Pnda+ [ Pada+ | Pjaa;
A A A

M= {P,lra1dA+§ P A + { P, 75 aa,
A A A

where Pp, P, and Fp are the normal, tangential, and binormal
projections of the 1ift acting over the elementary area di; r
is the radius~vector of the elementary area.

In the case of the freely molecular streamlining regime when
the Knudsen number Kg =2 1 [1], the forces acting at dA do not

*NumbéfS'in the margin indicate pagination in thé,foréign text.



depend on flow past the remaining surface and finding of the
integrals is much simplified.

In calculating nonconvex bodies, of the type of Interkosmos
series satellites, it is necessary to introduce a correction for
the interference caused by the shading of some satellite
structural members by others and for the repeated collisions of
flow molecules with the surface.

The exact calculation of the aerodynamic characteristics of
satellites #s very difficult, since thus far full-scale parameters
of the interaction of the incildent flow of rarified gas with the
surface are unknown. At the present time there are several inter-
action schemes [2, 3, 4] obtained on the basls of theoretical and
laboratory investigations. One of the most common is the diffuse-
mirror scheme [2], which was adapted in the calculations of the
aerodynamic characteristics of Interkosmos satellites.

Limited full-scale experimental data [5, 6] indicate | 4
generally in favor of the nearly diffuse character of the reflec-
tion of molecules from the satellite surface and the values of
the coefficlent of accommodation agze-.close to unity. Because of
thls, and with reference to the actual propertles of satellite
surfaces, in the calculations the values oy = 0r = a0y, = 1 were
adopted, where on and op are the coefficients of exchange of
normal and tangential momentum.

TABLE 1.
Date Satelllte Apogee, Perigee, w20 w S
km km °5 o =&
o L Moo
OO B wi
AP S Y B
£ oHMA O
LY -
o \o "GO
Av's e 698
Aol @8 o
La =36 &
CHoH O3
HO MM Py
10/14/1969 Interkosmos-1 640 260 48.4 93,3
10/14/1970 Interkosmos-4 668 263 48.5 093.6
16/ 7 /1967 Kosmos-=166 578 283 L8.4 92.9
5/78/1968 Kosmos-230 563 288 48.4 92.8




For the adopted scheme of interaction, the projecticns of
the 11ft Py, Pr, and Pp are expressed by the following formulas [7]:

ﬂ:{%%%rﬁmwﬁwig+wm%qﬂ+mﬂmmmn+

Ty —stsima, Tw o . 2
_}._2%7 l/%e XL ],;E 'l/-,‘_r:sma,;[l+erf(ssmcz{)]}-'125'-;

P, = {f-o%f-_—‘- e~ S % 1 sing; cosay [1 4 erf (ssin cx,f)]l} %—,
5 1

Py = 0. (the surface is assumed 1sotropidc).

Here a; 1s the local angle of attack of the avea; s = v/vyg
1s the ratio of the velocity of the incident flow to the most
probable thermal velocity of the molecules in the flow; T, 1s
the temperature of the gas in the incident flow; T, 1s the
temperature of the surface of the body; and p is the density
of the gas.

The effect of the nonsteady-state
nature of flow past a satellite caused
by oscillations relative to the center
of mass with an angular veloclty w was
not taken into account in the calcula-
tions, since the additional foreces and
moments induced thereby are of the order
of w~wR/V/compared to the steady charac-
teristics [7] and are negligibly small
in our case.

The calculated values of the drag

Fig. 1. General view coefflcient of the satellites Cy gilven
of the satellites with respect to the area A = 4.27 m2,
Interkosmos-1, Inter- the coefficient of the aesrodynamic
kosmos~4, Kosmos-166, moment relative to the center of mass
and Kosmos-230. mz given with respect to the same area

and to the length L = 1.8 m, and the
coordinates of the center of pressure
relative fo the center mass lg ~ - calculated with allowance
for the effect of shading as a function of the satellite angle of
attack o are presented In Flg. 2. Here it was assumed that
a is the angle betwgen the directlon of the longitudinal axis
of the satellite O0x facing the Sun and the vector of satellite
velocity vq relative to the incident flow; the axis 0z relative
to which the coefflclient. my was calculated ls always perpendicular
to the plane vpOx. Since the angle ¢ does not determine uniquely
the position of the satellite in the flow, the angle ¢ of rotation /5
{elativ?'to the plane of the angle of attack was also introduced o
Fig. 2).



To simulate the motion of a satellite in orbit in order to
make an analysis of the aerodynamic forces and moments acting
during flight, 1t 1s necessary to determine the valuesoof the
angle of attack o as a funection of time. To do this, let us
Introduce the following rectangular right-handed coordinate
systems:

-- the absolute system AXgygZg; the axls Azy coincides with
the Farth axis and the directlon to the North Star; the
axis Ax, is directed ftoward the point of the Vernal
Equinox v;

-- the terrestrilal system Exg¥eZe; the axls Ezg is orlented
from the center of the Earth along its axis of rotation
toward the North Star; the axls Exe 18 oriented toward
the point of intersection of the Greenwich Meridian
with the equator:; and

-- the orbital system CxpynZps the axis CYg 1s oriented from
the center of the Earth to the satellite center of mass;
the axls CXy lies in the orbital plane and 1s oriented in
the directicn of motion.

The instantaneous
values of the angle of

r i i - ~attack o are determined
_ by finding the projec-
oy tions of the vector v
ﬂ Véﬂ and the vector of
, ‘. B ?@0 - direction toward the
457

bx W/

4J]
0».." Sun 8 in the system

B Cnyoz The expressions
for the projections of

: the vector vg in the
) orbital system of
! coordinates are assumed

7 oot te be analogous to those
2w obtained in the study
‘ (8], according to which
ﬁ?tﬂdeg///( the vector vg 1s defined
Che orpic g ity of
Fig. 2. Calculated values of the coef- wind in thgnupggrtﬁe

a7 rradd

art

-1

42

ficient of aerodynamic drag Cyx, the the
coefficient of aercdynamic moment my, atmosphere

and the coordinates of the center of V=T 4+ 7

pressure lg as functions of the o

satelllte angle of attack ol Here Vv 1s the vector of

the satellite velocit
v is the vector of satellite velocity relative to the rotating 73
atmosphere, the projections of the vector v on the axes of the
system Cxg¥pZg are of the form

b



;{V;(I—FECOS\;); V-PEesiﬂv; 0}. ]

Neglecting the orbital precession in a revolution, we can repre-—
sent the profections of the vector v, on the axes of the system

Cxo¥ozg
Upl—r (wg+ o) cos ¢; 0; — (g 0)sinf cosul.

The modulus of the vector vg is /6

[Ie—

v, = V[V%—(l +ecosv)— (wy+ c)rcosf}- +

_'!_-l:_ QL9 . )
-+ 5 €*sin v-|-(me+ 6)2r¥sin®i cos?y. )

The_direction cosines of the vector vy in the system Cxgygzg will
be v(B1;B0383), where

_ V—::-(l T €005 V) — (me—f—'r)rcosi
7 i Be
_ At d rsinicosu ‘
B = Hermm e, ‘

Uy !

B,

]/' I . :

—esinv |

= ———-..—__. Lt .
by

]

e, 1, and v are the osculating elements of the orbif; we is the
angular rate of rotation of the Earth; o is the "index of c¢ircula-
tion" -- the angular velocity of the motion of alr in the westerly
direction relative to the Earth's surface; r is the modulus ef ‘
the radius-vector of the satellite center of mass; p 1s the focal
parameter; and u is the gravitatilonal constant of the Earth.

The position of the longltudinal satellite axis 0x, coinclding
in our case wlth the vector of solar erientation 5 to a precision
of +2%, 1is determined by two angles -- right ascension aj and
declination d. The direction cosines of vector s in the system
AXaYaZa Will he

A

5: = coscosay;
A .

Sy = cos 6sina,;

A .
8; = sind.
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Fig. 3. Actual values of the satellite angles of attack
in the orbital perigee:

Interkosmos-1

. Interkosmos-4

Kosmos-166

. Kosmos-230

W=

The direction cosines ofithe vector s in the system EXQ¥eZe are
as follows:

s§ = cos §cos (a; — 2);
5§ = cos §sin (&, —&); )

szeﬁ sin §,

. s . . s I
where Qg 1s Greenwich ephemeris time, Qﬂ%[l-ﬁk"(N"FI)+4}We% 3600l /1

Sg 15 the true stellar time of universal midnight; k is the
correction for the difference between the stellar and mean solar
times; N is the number of the time zone relative to which the
time 1s reckoned; and t 1s the zone time.

The direction cosines s; (1 = x, y, z) of the vector s
in the system Cxgygzg will be

8§ = 01584 058 7358,
where Ugl,,c-g, ay (J = 1, 2, 3) are the elements of the matrix
onve%sion %rom

of the the terrestrial coordinate system to
the orbital.
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Fig. 4. Instantaneous values of the coefficient of aero-
dynamic drag:in the orbital perigee:

1. Interkosmos-1

2. Interkodmos-4

3. Kosmos-166

4, Kosmos-230

The instantaneous value of the satellite angle of attack a
1s defined from the scalar product of the vector vy and 5:

@ == arccos (B,s; -+ P85 -+ Basd).

Pigure 3 presents the time-varying actual angles of attack ag of

the satelllites Interkosmos-1, Interkosmos-4, Kosmos-166, and Kosmos-
230 in the orbital perigee calculated by the method presented.
Knowing the actual angles of attack permits the more exact deter-
mination of the instantaneous values of the aerodynamic characteristiecs.
Figure 4 presents the instantaneous values of the coeffieclent Cy of
the satellites under study in the orbital perigee, obtained from the
data of the plets in Figs. 2 and 3. The drag2coefflicient C; of the
Interkosmes satellites is a smoothly varylng funefion of the life~-
time in the range of values 0.5-2.63; here the area of the midsection
is aasumed constant and equal to the area of the projection of the
sgtellite onto a plane normgl to the satellite axis of symmetry.
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~Key to Fig. 5: 1. tq,, hr
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3. kg-sec/m
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Using the actual flight data of the satellites Interkosmos-1, /8
Interkosmos-4, Kosmos-166, and Kosmos-230, an analysis was made
of the calculated and experimental aerodynamic characteristics.
To do this, from the variation in the satellite orbital parameters,
the denslty of the upper atmosphere was determined and compared
with#*the data of the upper-atmospheric model CIRA-65; the actual
momenta imparted to the orlentation system of the Kosmos-230
satellite in flight were determined and compared with the calculated
aérodynamic momentum; alsc compared was the actual lifetime of the
satellites with thelr predicted values.

The upper-atmospheric density was determined by a method
presented in the works [9, 10]. Figure 5 presents experimental
values of the density pgy cobtained by using instantaneous values /9
of the coefficient Cy carresponding to the actual ag (see Fig. 4),
and also the altitudes above the Earth surface h, local time tlos
and the index of solar activity Flot%- Here also are presented,
for comparison, the densities pgrga from the data of the CIRA-65
model, taken for the corrésponding experimental values h, tig,
and F1g,7.- Here the effects associated with the geomagnetic activity
and the semiannual varilations in density were not taken into account.

The differences between the semiannual values pex and PCIRA
are accounted for mainly by the effect of semiannual variations,
which are expressed by a density maximum in October-Nowember and
in April, and by a minumum in July and January [11]. The lifetimes
of the satellites Interkosmos-1l, Interkosmos-4, Kosmos-166, and /10
Kosmos-230 cover these characteristic periods {(except for April).
From the plots (Fig. 5) the mean relative deviations of Pex from
pCIRA Were determined, characterizing the semiannual flucfuations
in denslty; the data are given in Table 2.

During the flight of the Interkosmos series satellites in
the altitude range h % 200 - 600 km, the main perturbing factor
affecting motion relative to the center of mass 1s the aerodynamic
moment. To maintaln constant orientation toward the Sun, the
satelllites are equipped with an electric flywheel svstem
of orientation, which continually compensates for the action
of the perturbing aerodynamic moments, each”time'imparting;to o
the satellite a momentum equal in magnitude and opposite in " ° °
sense to the momentum of the external aerodynamic forces. For
unloading of the flywheels, on board the satellites is =a gas-jet
system periodically compensating the momentum accumulated by the



TABLE 2.

Period Considered Satellite Mean Relative Deviation
of Experlmental Density

Values from Model Values
(pCIRA - pex)/pex

151Jul - 24 Aug 1967 Kosmos-166 0.44
5-22 Aug 1968 Kosmos~230 0.32
1-29 QOect 1968 Kosmos=-230 -0.35
27 Oct - 29 Nov 1969 Interkosmos-1 -0.38
21 Oet =~ 2 Nov 1970 Interkosmos~-4 -0.59
10-16 Jan 1970 Interkosmos-1 0.09
1-7 Jan 1971 Interkosmos-14 0.28

filywheels. Thus, 1t was of Interest to compare the actual momentum
MI communicated to the satellite by its gas~jet system, with the
calculated momentum Mg of the external aerodynamic forces obtalined
for the actual paramefers of satellite orbit and orientation.

This comparison 1s made below for the example of the Kosmos-230
satellite.

Using the law of conservation of momentum [12], for a certain
time iInterval tg - ti we can write the equation

where Myep = (1/2)mzAva§ 1s the aerodynamle moment; M,,, = R1

is the control moment; t; 1s the time during which the engine of |
the gas-jet system is operating at the i-th cut-in; R = Pofchp¢1

is the engilne thrust; py is the pressure in front of the nozzle;
fer 18 the area of the nozzle critical section; K, is the thrust
coefficlent; ¢; is the coefficient of losses in the nozzle; and
1 '1ls the arm at which the engine thrust is applied relative to
the center of mass.

The time t3 in some interval tg - t, l1s defined from the
mean value of the pressure drop pay in the cylinders of the gas-jet
system on the assumption that a single nozzle is operating.
Figure 6 presents the actual values of p for the Kosmos-230
satellites. The sawtooth nature of the variation in p is =
accounted for by fluctuations in the temperature T of the gas
in the cylinders:
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where G$ is the specific nozzle consumption per second, Vc is
the cyllgder capacity, and Rg 1s the gas constant.

Since the directions in which the engines of the gas~jet /11
system act are at the angle /2, and the direction of the action
of the momentum vector 1s equiprobable, the experimental values
of the momentum Meyx corresponding to the maximum Rl and the
ERIEN KIS

minimum Rum5§J control moment were determined (Fig. 7). The

momentum due to the action of aerodynamic forces was integrated
over the intervals tg - &y; here the limiting deviations.of

the calculated values of the modulus of the coefficlent m, (see
Fig. 2) corresponding to the angle of attack ag at the perigee
(see Fig. 3) were used. The density of the upper atmosphere
was assumed according to the CIRA-65 model for the altitude
h%f+ AH (here hp 1s the perigee altitude, H 1s the altitude of
the homogeneous atmosphere, and X 1s a coefficient that allows
for the ellipticity of the orbit), the local time at the perigee, /12
and’actual level of solar activity Fipg.7. The reglon of the
possible calculated values M% is given in Fig. 7.

fﬁﬁ%
| | T,

760 : ‘

From this figure

1t follows that in
the period from 7
August to 18 September
1968, when the angles
5 f - of attack ag were
L small (ag % 10-40°),

- the regions of the
, values Mg and Mg

[
\
t
1
|

740

|
e : ; . .
20 . e — coincided. In the
sﬁtﬂk\ | - perlods from 27 July
- ‘ | ] J . to 4 August, and from
0 20 400 e o0 wos 1200 1409 & revolutions © 20 September to 21

‘ . October, when the
ag values were 50-70°,

Fig. 6. Varlation in actual pressure in and the calculated
cylinders of the gas-Jet system of the values of mp had
Kosmos—-230 satellite; _ maxima, a deviation
the thicker line corresponds to the was observed; ME was

mean pressure. approximately 60 and
(70-80)% Qf_ Mrarf:

respectively. This deviation can be accounted for by the following
causes. '
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Flg. 7. Actual Mg and calculdted M@ values of the momentum
due to the action of aerodynamic forces of the Kosmos-230
satellite:

1. Region of possible actual values MI; 0

2. Region of possible calculated values Ma'

s
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1. Since the satellite is a body of complex configuration,
melecules reflected from the surface undergo multiple collisions
with the surface (interference effect). In the case of the
Kosmos-230 satelllte for which the angles of attack are in the
region ag < 909, the interference 1s characterized by the collision
of reflected molecules with the reverse side of the solar batteries.
This leads to the generatieon of a moment M, that is opposite in
sense to the perturbing aerodynamic moment and, as shown by
estimates, 1s about 60% of Mgep. This ratio of Mgep and Mg

noted by the relatively short distance between the satellite
center of mass and the center of pressure 1d calculated without
allowance for interference (see Fig. 2).

is pro-

2. The values

. of M (see Fig. T)

‘T@’[deg wereacalculated on
QY : the condition of

3ﬂ §§§\\§§§ flow past %he

m| §Q§h\\\ §§ satellite at the

\ angle of attack
QX}i“%@ﬁ N ®g. This con-

{?_Jg/«gj' 70 \5\:}5\ 1520 _29Date dition is not

X X 1958 exactly fulfilled

especially &%’ the

end of the life-

10

Fig. 8. Region of possible deviations

of the angle of attack of the Kosmos~230 .
satellite In the.penumbra 'of the Earth
from the values og calculated without

allowing for the shadowed sectlon of the orbit.
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time when the
orbit becomes
weakly elliptical.
When the satellilte



Passes the reglon of maximum aerodynamic head in the region of
the orbital perigee, the values of o can differ appreciably from
Gs. For example, on 7 October 1968 the angle of attack of
Kosmos-230 was ag = 57°, and the change in o relative to ag in
the reglion of altitudes hp - (hp'+ AH) was +35°. This reduces
the averaged coefficient my in the perigee region by about 50%,
and with reference to the averaglng of the density leads to an
approximately 25% reduction in Mg.

3. In the period from 20 September to 21 October 1968 (see
Flg. 5 d), the local time at the point of perigee ty, was tiq '=
= 4.5 - 1.5 hours, that is, the region of the perigee of the
satelllte orbit was in the shadow of the Earth. Over this
section the satellite executed unoriented motion relative to
the center of mass with the angular rate & equal to 0 <<u < 0.5
deg/sec. This also led to averaging, and in this time range,
it also led to a decrease in the calculated value of mgp. The
region of deviation of the angles of attack of Kosmos-230 in
the shadow of the Earth from the oag values calculated on the
assumption of a nonshadowed section is shown in Fig. 8.

4, The scheme of reflection of the incident flow of
rarified gas from the satellite surface was assumed to be completely
diffuse. Actually, the parameters of full-scale interaction can
differ from those adopted in this study, which can alsoc account
for the difference obtained in the values of Mg and Mg. The

authors determined the values of Mg usling the scheme of inter-
actlon given in [4], that allows for the dependence of the
coeffilclents g5 and o; on the angle of inclination of the area
to the flow. The resulting values exceeded the values of Mg
given 1in Fig. 7 by a factor of three.

It was of interest to analyze (see Fig. 6) the drop in
pressure p in the gas-jet system cylinders. The values of Pav
in the region of the 560-th to 630th and 940-th to 1060-th /1
revolutions have horizontal sections, indicating the absence T
during this period of aerodynamic perturbations. Actually,
during thls periocd the values of ag were correspondingly 20-30°
and 16-20°, for which my is small ?see Fig. 2), and for certain
angles ¢ the possibllify that mzy = 0 1s not precluded.

. The precision of the calculation of aerodynamic forces as
an integrated icharacterlstic can be determined by comparing the
actual ballistic lifetime of satellites with the calculated
values.

13



TABLE 3.

Ballistic Lifetime of Satel- Relative Frror,

lite in Orbit, Days yA
Satellite Actual . . Caleulated . . ...
Interkosmos-1 80 82 2.5
Kosmos-~166 131 128 2.0
Kosmos—230 120 118 E.Q

The calculated time was found by integrating the system of
differential equations of the motlon of the satellite center of
mass 1n osculating parameters [13], on the assumption that the
Earth gravity fleld corresponds to the potential of a three-axis
nonsymmetric ellipsoid. In the c¢alculations use was made of
the values of the upper-atmospheric density from the data of
the CIRA-65 model, corresponding to the daily values of the
index Fyg,7 and to the local time of the satellite track point.
The coefficients of the satellite drag Cx at each instant of
time corresponded to the actual angles of attack ag. The cal-
culation results are in Table 3.

The results of analyzing the actual parameters of the motion
of Interkosmos series AES indicate the adequate reliabililty of
calculated values of aerodynamic forces and moments obtalned by
using the wholly diffuse scheme of refle¢tion (o, = 0p = age = 1)
and the upper-atmospheric model CIRA-65.

The authors are thankful to G.I. Zmiyevskaya for discussion

of the results, and to N.M. Lukonln for assistance in the
calculations.
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SELECTION OF EXTREMAL TRAJECTORIES FOR THE /14
LAUNCH:OF: AES FROM ORBIT - )

N.F. Gerasyuta, E.P. Kompaniyets, and A.A. Krasovskiy

Much attention at present is being given to the problems
of determining extremal trajectories in space ballistics. 1In
most studies the problem of the transfer from one given point
in space to another along a trajectory ensuring the minimum fuel
consumption is solved. As the optimized functional, use is
1

made of the integral of the form Snﬂf , characterizing the

consumption of mass during the flight, that is, essentially.ifor
a specifled engine operating regime the duration of the powered
trajectory section is optimized. The boundary conditions at the
boundary polnts in this case are assigned completely or some of
them remain free. For incompletely assigned boundary conditions,
also considered as an additional optimized functional are the
parameters of motion at the left [1] or right [2-4] eridpoints

of integration (velocity, altitude, range, angle of inclination
of the velocity vector, and so on) appearing in the coupling
equation.

For the case when 1t 1s necessary to eoptimize a certain
functional dependent on several or on all parameters of motion
(altitude of apogee, altitude of perigee, orbital 'eccentricity,
period of revolution, energy, etc.), the solution is considerably
complicated and requires a very long time even when electronic
computers are used. Thils..article propeses a method for optimizing
the trajectories of launch from orbit of AES, starting from the
final target of injection into the assigned orbit. Any charac-
teristic of the resulting orbit can be selected as the optimized
functional (apogee altitude, perigee altitude, period of revolution,
velocity at any point of the orbit, angular position of the perigee,
focal parameter, etc.).

- Fermulation of the problem. The position of an object in
space 1s completely characterized by six orbital elements (Q, 1, w,
a, ¢, and T).

Por individual cases (circular or parabolic orbits), several
of these elements are meaningless.

In addition to.these'main elements, in celestial mechanics
other guantitles are also used, replacing them [5].
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Here the substituting elements are written under each of the
maln elements that they can replace.

When space objects are launched, the assigned value of the
orbital parameters on which the execution of the given mission
depends must be ensured; the remaining parameters, obviously, can
be selected arbitrarily.

Let us examine methods for ensuring assigned orbital parameters.

1. The parameters Q, i, w and their substituting elements
determine the orientation of the orbital plane in space (Q, i)
and the orientation of the major axis in the orbital plane (w). /15
The assigned values of these parameters for an assigned launch
point (¢P@£ Ag) can be ensured without energy expenditures as

the result of selecting:

a. the Instant of launch from Earth, and by varying this
quantity in the range 0% < t < 24D we ensure any desired
value of Q/from the range 0 < Q < 360%;

b. the azimuth of the launch, and by varying this in the
range -90° < Pg < +90° we can ensure any value of the
parameter i from the range (T - ¢pg) <1 < fry; and

¢. the lnstant of launch from the parking orbit, and by
varylng the instant of launch from this orbit in the
range 0. 5 © < t, one can ensure any value of the param-
eter w from the range 0 5 w < 360°.

2. The parameter 1 and the elements replacing it determine
the posltlion of the satellite in orbit at the initlal instant of
time. The assigned value of this.parameter can be ensured by
using the Intermediate orbit through selecting the corresponding
revolution for the transfer to the assigned orbit.

3. The remaining elements (a, e) and thelr substituting
elements (hy, hg, P, T, n, and ¢') determine the dimensions of
the orbit and its shape, and under otherwlse equal conditions
depend wholly on the parameters of the endpoint of the powered
section of the trajectory of the satellite injection into orbit.
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Therefore, the main requirement which the selection of the
inJection trajectory must satisfy is to find the optimal law of
control of the launch vehicle flight ensuring the attainment of
the assigned value of some functional of interest to us (a, e, hy,
hg, ...), for minimum energy expenditures or determining the
trajectory ensuring the extremal value of some functional (hﬂ, ha,
P, T, n, ¢', etc.) for assigned energy expenditures.

Let us examine the motion of a spacecraft (SC) acted on by
a planetary gravity field and the SC powerplant. We will assume
that the SC has first been injected into a cirecular or elliptical
orbit. At some instant of time it is necessary to execute a
maneuver to perform an assigned mission: to leave the planetary
sphere of attraction; to transfer to an elliptical orbit; to land
on the planet's surface, etc.

Let us find the trajJectory ensuring, for assigned kinematlc
parameters of the start of the trajectory, the extremal value of
some funetional I at the moment of engilne cut-=out, which we will
assume to be given. The form of the functional I evidently will
depend cn the mission to be performed. Owlng to reciprocity,
the resulting solution will ensure alsc the attainment of the
assigned value of functional I with minimum fuel consumption.

We will assume that the trajectory of the SC in space is
defined 1f we obtain a closed system of differential equations
desceribing the motion of the SC centerof mass and 1f the
initlal condltions for the integration of this system ensuring
the attalnment of the extremal value of functional I are
selected.

Let us examine the case when the maneuver of the 3C occurs
in the plane of the initial orbit deflned by the parameters of
SC motlon at the initial instant of time. Thls assumption,
without diminishing the generality of the results and without
introducing fundamental and essential errors into the analysis,
enables us to simplify our analysls and to select the extremal
trajectories.

" The system of equations adopted. Let us limit ourselves to
the case when the mass of the rocket and the engine thrust are
assigned functions of time.

We will solve the problem given the following simplifying
assumptlions:

1. the planet is a sphere with radlally distributed density
of mass;

2. the linear dimensions of the spacecraft are Insignificant
compared with its distance from the center of the planet;
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3. the drag of the medium ls absent;

4., the component of the thrust expended in control is
negligibly small compared with the total thrust; and

5. the control system and the power unit operate ideally
-— the vector of the engine thrust always coincldes
with the programmed vector.

The differential equations of motion 1n this case in the
launch system of coordinates can be written as:

dVy P
ar m
2]
m

COSP — £
SINQ — gy
ax vy (1)

The system will be closed if the dependence of the parameters P,
m, and ¢ on the time, and the dependence of the parameters gx and
gy on the coordinates are assigned.

The proJections of the acceleration of the force of gravity
onte the axes 0x and Oy can be represented as:

g = —
T ETR L e
g, = g, REOF (2)
R R g f
ar X
2k ¥ ¥
£ (R + 93 + 227>
R (3)
gy=*r ;

(R -+ gy 4 2272

Considering that in solving these problems the extent of
the powered sectlion of the trajectory of the launch from orbit
is assumed to be more or less restricted, in order to facilitate
the solution of the problem, let us simplify‘the'expressions for
gx and g We will expand them In series in neighborhoods of
'the poin% (0,0} and, by limiting ourselves to the terms contain-
ing x and y to the first power, we will get the approximate
formulas:
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Equatlon of extremal trajectory. The trajectory of a SC
1s described by four first-order differential equations:

X

. P ‘
o= Ve s b T ,

1 _ P R4y _
oy =V m sing + & (R + g)* + #4"/2 =0, } i {5)
wy=x—V, =0, l
m4=y—Vy=J0, J

which are differential equations of coupling between the parameters
Vxs Vy, X, ¥, and ¢. These equations include one independent
variable g, flve dependent variables Vx, V&, X, ¥, and ¢, therefore,
have a single degree of freedom. Thus, for any assigned system of
initial conditions xg, Yo» Vxpo, and Vy0= there is an infinlte set

of possible trajectories differing by a law of control of SC
attitude in space ¢ arbitrarily assigned for each of them.

Suppose iati the initial instant of time t - tg the kinematic /17
parameters of motion of the variable-mass point mg are asslgned:

Xoy Ho» ¥ c0. ]_'f_f.r(h l: (6)

If over the time interval |tg, ty| the law of control ¢ of
the SC attitude 1n space is assigned, the trajectory of the object
1s determined uniquely, since in thils case we have the unidque
solution

X =Y (%o; 403 Veoi Vior @),
Y= (x5 Yo Vs Vo @), |
Ve=1P3(x¢) Yoi Vio: Vi o), & D
Vy=1(x5 4; Vi Vo, ). ~

Tt 1s requlred, among all controls ¢ transferring the S0 from
a point with parameters xp, yg, Vxg and Vyg, to the point in space

Xgs Yks Vxk and Vyk, not explicitly assigned, to find the control ¢
that provides the extremum for some functional
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] -—_-f(xk; y‘,;.; ka; Vyk)s (8)

dependent on the kinematic parameters of motion at the endpoint
of the powered trajectory section. We will call the trajJectory
satisfying this condition the extremal trajectory.

In determining the extremal trajectory, we will not specify
what the functicnal I is. We will leave it in the general form
(8), assuming that first derivatives of this functional exist
and that they are continuous over the time interval [tg, ty

Let us solve the problem for the arbitrary extremum of
funectional (8). To do this, let us examine a new functional:

Ik !

F=:14‘§Hﬁ==ﬂx;y;Vﬁ‘@)%ngdL | (5)

I
‘o 5 |

Here, the integrand function will be of the form

H = Moy + A, <= Ly, + :'._:L')_q, \ (10)

where Aj, Ap, A3 and Ay are certain, thus far undetermined, ¥
functions of time; oj, wps W3, and wy are determined according to (5).

By virtue of condition (5), functional (9) is equivalent to
functional (8), since the integrand H tends to zero for any values
of the parameters Ay.

Obviously, variations of these functionals will also colncide.
Let g1 stand for the functions ai = x, y, Vx, Vy ¢ being varied
and let us take the first variation of functionil (9):

=ty tk 5 i=ty

L
9 oH M - ,
Z( by, + Sgejdt+ Hdr| 7\ (11)

5
apzéqgwf +j

:
=l &

99 ag;

1

.

Integrating by parts, we get;
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(12)

Let us make an analysis of the varlation of functional F.

The flrst term in expression (11) can be rewritten as:

5 tety,

5Q = X Oq: 2 sq,

i=l

Ar
= an0+ W avyo+ dx 8x, + ;y 8y, +

a o (13)
6Vyk + ""_—6-""& + ‘5_%3 + S o + _dﬁi;‘&pk' ‘

+ 6Vzk

At the iInitial Instant of time €t = tp, the values of the
functions being varied are asslgned, and therefore their variations
are equal to zero:

Wi =Vo = b1, = 8y, = 0. | (14)

Assuming that function T does not depend explicitiy on the
pltch program, we can write the equality:

9L/3 = 0 (15)
for the entire interval of integration.
Therefore, expression (12) becomes simplified,

' ar
6Q = GV;.@'}" dV Ve + ax %, - 0 8. (16)

Let us examine the second term in expression (12):

5 t=t),
aq
[( _i=1—¢?q-_:q‘)6f+2": dg; &h] = .}
t=st, |
5 =k s 5 } (17)
==V )at] N oH \' 94
g + r—238 — » L
/ [( i‘l‘ g iy Z-‘_-'ll dq; e t=t, g 2 8. temt
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Since the length of the interval of integration |tg, ty|
i1s assigned, the variation &t must be equal to zero:

§t = 0 (18)

With reference to conditions (14), (15), and (17), we can
rewrite the second term in expression (12} as:

.h:ttk 5
. ' 9 —
X2 6f+2——6q:] =25t~ |
=l dgy i=] i -y =1 Y4 &
(19)
& 5 by 2 b,
- TV — i yk+ R T
3ince the function H does not depend explicitly on the
derivative ¢, obviously, the equality
Mg (20)
iy '
obtalns.
. X . aH aH aH aH !
Let us determine the derivatives 7y o7 w7 and -,
by using (10) and (5): xk ik L LI
— =Ap —— =
avxk axk (21)
afH = Aok; 'ai:'lm t
av ayk .

From expressions (12) - .(21), it follows that the variation /19
of the functional (9) wlll be of the form:

6F:( TVt —— W 8, + a 8x + —— a 65;,2)_{_
{}ka’yxk —]- szﬁvyk -+ }\«akaxk + Mkﬁyk) +
d (22)
.«S{aw (5 )]st -
where ol o o . and X are the derlvatlves of th  b ti 1
Ve ' OV ' Oxp Ogn - - . g functiona

being optimized wilth respect to the correspondlng functions at the
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instant of the endpoint of the powered section B = 8y)s Ak
Aok s A3k» @nd, Ay, are the values of the functions A3 at the

endpoint of the powered section.

By grouping the terms In expression (22) containing.identical
varlations of the functions SVys GV&, 6x, and dy, we get:

§F = (-C%k— + ?\.;k) Ve + (‘—d%;T + Mk) 6V + (—(i—!: + ;\-Bfe) dx, +

! .
+ (g + o) S+ g f[%’ — 7 (5] bt

[

(23)

_ Assumling that there is an internal extremum for expression
(23), let us find it from the conditlon:

§F = Q (24)

For varlation (24) to approach zero, it is necessary that
the functions q3 (Vy, Vy, X, ¥, ¢) being varled satisfy the Euler-
Lagrange: « equations:

o4 4 (OHY g
09 dj(aqlt)__ ’

! (25)

and the Lagrangian multipliers {Ai) will be selected so that at
the right endpoint of integration the following relations are
satisfied:

_ of a
Aip = _aTx:’ Kak=—-axk’:
|

I ar 6

z:gk = — o —— ! (2 )
avyk ' z«}k ayk .

The system of equations (25} is a necessary condition for
the extremum of functional (9).

The Euler-Lagrange equatlons (25) for functiocnal (9) depend

on the form of the coupling equations. For coupling equations (5},
they can be written as;

it ks =0, (28}
lz + }‘*4 = {},
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iy — 2 Dy (7° = B2%) — By (R + )] = 0,

b~ (= 3R+ g — A R4 4)) =0,

P .
— (A sing — A, cos g) = 0.

By solving equation (31), we find:

¢ = arctg —;t’_ ‘L

(292
(55
(31)

(32)

The system of equations of the extremal trajectory can be

written as:

[) x
V.t’ = FCOS P — k

R+ g - a2)s °
: P R+
V,=—sing—E& cy
T HR + gyt x2fe
x=V,
y=",
?:"12—‘?“.']1
hy= —h,

Ay = o Thy (7% = 330 — Bhpx (R 1 g,
A= L D1 — 3 (R + ¢)2 — Bhyx (R + ),

i
¢ = grctg =,
‘i

P=P{,
m = m (),

(33)

The system of equatlons (33), together wlth the initial con-
ditions of motlon of the variable-mass point at the Initial instant
of time (6] and the boundary conditions at the right endpoint (26)

gives the complete solution to the preoblem formulated.

Here, the

pltch program ¢ = ¢(t), deflned by Eq. (32), cannot be obtained
in explicit form, since the system of linear differential equations
(27) - (30) with variabie coeffilcients (x, ¥) is not solvable in
explicit form wlth respect to the Lagrangian multipliers Ay. To
find the extremal trajectory, we must select the lnitial values

of the Lagrangilan multlpliers Agy, which at the endpoint of

the ilntegration interval ensure the boundary conditions (26). The
Lagrangian multipliers Agy can be selected by using any iterative

methods.

/20
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In practice, the extent of the powered trajectory section is
limited In the number of cases. Then finding the extremal
trajectory is simplified owing to the possibility of introducing
simplifications into the coupling equations (5). Let us examine
the same problem of determining this trajectéry of the variable-
mass point in a central gravitational field that furnishes an
extremum to the functional

!':f(xk: Y Ve Vyk)n (3}"')

dependent on the kinematic parameters of motion at the endpoint
of the powered trajectory section. We will also assume that the
time interval lto, th tn ‘which we seek the extremal trajJectory
is specified.

Let us replace the differential coupling equations (5) with
the corresponding simplified equabions:

, TP
W, = Vx——"-z-ccsp—i—vax =0,

- P .
@y = Vy— Sosing + g — 2% = 0, (35)

oy==x—V, =70,
3 X

oy=y—V,=0,

2

where v© = gO/R.

By bringing into consideration the equivalent functional:

!

o .‘
F=rId+\Hat =141 N hodt (36)
LY * —1 i

I L i= i

and followlng the same reasoning that was gilven above, we obtain

~
)
|_J

the result that a necessary condition for the extremum of functional

(36) (the approach to zero of the first variation) requires that
the functionS'quYX,‘Vy, X, ¥» $2 and 23 (1 =1, 2, 3, 4) satisfy

the Euler-~Lagrange equations:

o _ 40, ‘
g @ gt =0 (37

Let us simultaneously obtaln the boundary conditions at
the right endpoint of iIntegratlon ty.:
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if al ‘

Mg = —

vy =T T
al AU (38)
Aop = — T’W‘_ e = Frra

The Euler-~Lagrange equatlons for functional (36) can be
written as:

b= | (39)

fo = — Ay, :

e T ; (40)

?\.3 — vzrﬂl, i (l\[l)

h, = — 2%, | (42)
—,;1'?—?L,sin(;>—y‘:’1 hycosp =0, | (43)

From Eq. (#3), we get the optimal pitch program:

q>=arctg—jt£. ? ' (44)

1

Equations (39) - (42) are a system of linear differential
equations with constant coefficients and can be integrated. .

By integrating Eqs.i(39) and (40), and by using Eqs. (41)
and (42), we get:

.’{, = —ky=— Apn? (45)
(46)

By setting up the corresponding characteristic equations

p12 = —W : (47)

P (48)

and by solving them, we get the roots of the characteristic
equations:

P =iV, Py = —iv, (49)

P2 = V§V’ Paa == ?v' (50 )]
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The general solutions of the homogeneocus differential equa-
tions (45) and (46) can be represented as:

(51)
(52)

Ay = f cos vé 4 fysinwi,
?\..2 = [aemr + f!e—cﬂt,

where f1, fp, f3s and fj are certain constant coefficients; w= V2w,

/22

With reference to (39) and (40), we get the expressions
for A3 and Ay:

hs = frvsinwve — fevcos i,
. A‘d = famemf + f4me—‘°‘. r

(53)
54

Let us define the constants f£1, 5, f3, and fﬂ in Egs. (51) -

(54). Using the boundary conditions at the right endpolint of
integration (38), for the Lagrangian multipliers weccan write:
a1 .
Aip = — o= frcos v, -+ fosinvi,, |
ar :
hog = — T = fue¥% - f,e—%, ,‘
;‘ugk =———-%— =f1‘VSiﬂ‘ka—f2'\r‘COS ka, \ (55)
k
Ay = — a(;i = — [swes 4 fume00,
By solving the system of equaticns (55) for f;, we get:
— 6(13/! v eosviy — ax; sin vip
xk |
fl = " ? 1
— B?ff v sin vl -1 ;J:k Cos vig
xk
f? = v 3
of o1 (56)
T, °+ 5,
fa - Qmemk 4
ol al
. TaV, T oy,
f-l - 2(’)e—m:k ' )
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The optimal pitch system (44) providing an extremum for
functional (36), with reference to expressions (51), (52), and
(56), can be represented as the following function:

-—ﬂ-—ﬁ)chm(f,‘—t)v}- ishm(tk—t)
= arctg {— s i
v= ¢ V2 9! veosy (fg—1) + o sinwv (¢ f s (57)
v, ’ g, SV e—0

1

The expression for the optimal plteh program, given the
simplified representation of the Earth's gravitational field,
1s analogous to the results obtalned by D.B. Okhotsimskly and
T.M. Eneyev in solving the problem of determining the optimal
control ¢(t) ensuring maximum level~flight velocity Vi at the
end of the powered section at a specified altitude hy [1], and
is a generalilzatlon of the results they obtained for an
arbitrarily assigned functional, dependent on kinematlie param-
eters of the end of the powered trajectory secticn.

In this case, the system of equaticns of the extremal

trajectory and the final relations can be written as:
V, = %cosm — R,

§

- Vy = %—Siﬂ(p — go 1 2v%, \

=V, \
gV N /23
( | 0?/] wchw (fy— £} 4 Jor sha (fp — 1) {
= arcig — 4 :
‘F {' V2 —(-J-(—;:-I—-—VCOSV(I‘.&— 0+ acj:k sin v {fy —f) (58)
' xk
P =P},
= m(i),
1/ =
=1 %, s
w= I/E\’. |

The system of equations (58), given the initial conditions
defining the motlon of the variable-mass material point at the
instant tg (6), wholly defines the extremal trajectory of this
point.

Further simpliflcation of the equatlions of the extremal
pitch program providing an extremum for the functional of the
type (8) can be made for the plane-parallel field by the method
given above. In this case the formula for determining the
optimal pitchsproegram 1s of the form:
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Expression (59) is analogous to the results. given in the
studies [1, 6-8].

Legendre-Klebsch condition. ' To evaluate the maximum or
minimum value of the functicnal Tor the extremal trajectory, just
as in finding the maximum (minimum) of functions, we must deter-
mine the sign of the second variation. The Legendre-Klebsch
condition is a supplementary necessary condition for the existence
of the extremum and determines its form. :

As assumed above, the functlconal
tk

F=I14+{HWV, V, x gyt (60}

A j

is linear relative to the first derivatives and obtaining the
second variation, and therefore, any evaluations concerning the
maximum or minimum of the funetional achleved on this extremal
trajectory does not appear possible.

It is shown in the work [2] that in solving problems of
finding the optimal trajectories of SC, one must include among
the functions being varied the controls u of the magnitude and
dlrection of the thrust vector. Here a necessary conditlon for
the maximum value of the extremum of the functional is that
along the extremal tetween the nodal points the inequalities

FF
ldmmh

8=
i,

Gmﬁm<0 (61)

Nihel

be satlsfied, and a necessary condition for the minimum value of
the extremum of the functional is that along the extremal between
nodal points the inequalities

é 6n0ru= Famg o1 >0 (62}

=l

be satisfiled, where n 1s the number of functions belng varied,
ni and f are the functions belng varied.

30



The absence of the equallty sign corresponds to the strength-
ened Legendre-Klebsch condition.

In our case, for optimization, the Legendre-Klebsch /24
e-function can be written as:

-5
— \ 92F _ |
e k1_= nlank énlank' (63 )

where ny = Vyx, n, = Vj, N3 = X, My =y, and mg.= 6.

Extendlng expression (63) with reference to (6¢), (5), and
(10), and assuming that only the first derivatives of functional
(60) exist, continuous over the segment [to, tkl, we get:

&= (hi cos p + Ay sing) (8= (64)

With reference to the Euler-Lagrange equation (31), we will
have: ‘

! h .
g = -l i
COS(P! OI‘ € = Sl.]'l(P‘W (65)

Based on expressions (61) - (65), we can make the following
conclusions:

1) the optimal pltch programs providing a maximum for

functional (60) must satisfy over the segment [tg, tyl
the condition:

M . 5o !
cos <0 op m‘goif (66)

2) optimal pltch programs providing a minimum for functional
(60) must satlsfy over the segment |tq, tj| the condition:

g or kg (67)

Cos ¢ f sin g &Y.

From conditions (66) and (67) it follows that:

1) 1in the acceleration of the SC, when the ..pitch program
over the time interval |tg, tk|11es within the range
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2)

3)

— 5 <e<+ -, the maximum value of functional (60) is

reallzed when:
Ae < 0 (68)

and the minimum -- when:

Ay 20 (69)
independently of the form of the function I to be
optimized (whether it is the apogee altitude, the velocity
at the end of the powered section, the energy, the semi-
major axis, the period of revolution, eccentricity, etc.);

in solving problems in space ballistics assoclated with
the deceleration of a SC (launch from orbit, transfer
from a high-altitude circular orbit to an elliptical orbit
with minimum perigee altitude, etc.), when the pitch
program over the time intérval |tg, ty| lies within the

range il~é@*€1u3<u the maximum value of functional (60)
) LT

is provided when:

Ay >0 (70)

and the minimum -- when:

A <0 (71)
when the pitch program ¢ passes through zero or /2,

the parameter A, must also reverse its sign, i.e., it
must pass through zero. '
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ANALYSIS OF PROBLEMS OF SPACECRAFT NAVIGATION
AND CONTROL

V.V¥. Gorbuntsov, V.G. Komarov, V.F. Lager!,
G.L. Madatov, and A.T. Onishchenko

Trajectorles of spacecraft can be divided naturally 1nto
sections that are speclfic as to the nature of motion, and
control tasks and methods.

The first (powered) sectlon, along which motlon cccurs near
a planet with sustainer engines functioning, differs by its high
energy indicators for a relatively short flight duration. These
characteristics of the powered section lead to the necessity of
energy optimization of control wlth the presence of a series of
constraints on the trajectory and the control system.

Numerous problems in optimizing programmed motion (maximum
response, minimization of fuel consumption, etc.) can be reduced
to the Mayer variational problem. The shortcoming of classical
methods of solving the problem is the necessitynof setting up an
auxiliary system of differential equations, whether the Euler-
Lagrange equations in the problem with unconstrained variations,
or the Hamiltonlan system of equations in the principle of the
maximum with constrained variations [5].

The method of dynamle programming ylelds numerical algorithms
that lack this shortcoming, but thelr realization in the general
case requires the storage of cumbersome tables. The problem
of reducing dimensionallty usually requires in each case an
individual examination and some computational art. The sequential
procedure presented below -- the method of envelopes -- in several
cases of practical Importance l1s more economical than the classiecal
algorithm of dynamic programming.

The second {passive) section is marked by a long duration and
low energy outlays. Here the problem of determining trajectory
emerges to the fore. Regardless of whether this problem is solved
on Earth (trajectory calculations) or in an onboard digital
camputer (onboard navigation), requirements of high aperating
economy and preclalon are imposed on the algorithms. . ;.

Most known algorithms for the operatlonal calculation of
trajectories, for example, trajectories of the class Earth- Moon-
Earth [3, 9, 1Q], yield only an approximate solution to the
constralned three-hody problem. The methods presented below for
determining the parameters of the motlon of spacecraft (8C) over
the passive flight sectlon in the gravitational fTield of several
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attracting centers -- the method of independent actions and the
method of Imaglnary masses ~- are convenient for the operational
solution of both the constrained and the unconstrained n-bedy
Problem, are economical, and are not inferior in precision to
methods of numerical integration.

The method of independent actions 1s based on the approxima-
tion of the true trajectory of the object of interest in the
n~-body problem by a sequence of geomeftrical sums of unperfurbed égé
trajectories 1n the two-body problem, calculated on the assumption
that the object of interest is in isolated interaction with each
attractling body of the system. In the method of imaginary masses,
the true trajectory of the object of interest is approximated by
a sequence of sections of unperturbed trajectories in the two=
body problem relative to some varilable imaginary attractlng mass.
In both methods, calculation of the true trajectory reduces to
determining at the calculation step the parameters of the motion
of the obJect from the final relations of the theory of Keplerian
orbits.

A speclal place among problems of control over the passive
section 1s occupied by problems of optimization of the control
of the motion of an object around the center of mass. Here the
main requirement is usually the minimum energy outlays while
ensuring the required precision arid operating economy of the
algorithms from the standpoint of instrumental realization.

Finally, the last section -- the sectlon of descent onto
a planet, Just as the powered section, imposes increased require-~
ments on the programs of the control system, since a number of
requirements that are technilcally difficult to achleve and
contradictory, aimed at ensuring the viability of the object
in the difficult condiftions of motion, are imposed on the
trajectory of the object. The soclution of these problems often
reduces to complicated nonstandard variational problems. Applying
the principle of the maximum [5] gives a positive result when
solving a broad class of these problems.

The method of envelopes. Let us examine the proposed
procedure :for optimization with the example of the solution to
the prgblem of maximum response for a second-order object
(n = 21z

¥=Tix a, 8,
Xt =x° ucl, (1)

where x = {xj, X2} are the phase coordinates of the object; u:is
a scalar control, where we will first assume the set U of admis~
" slble controls to coincide with the space of smooth functions;

T = {fy, fo} #s a vector functlon, differentiable and continuous
together with its derivatives, such that:
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62)‘1 9f, af, a2f, (2 )

o T T e e =0

Further, we will assume that for a fixed x and t, the set of
vectors f(u, C) is convex. It ls required to select the control
u(t) so that the object occuples, in the minimum time T, the
position where L(x) 1s some single~valued function:

STV ek L(x) =0} (3)

Let us Introduce into consideration the time interval At > 0
sufficiently small so that, by preserving the required precision
of the caleculations, we can assume over the interval hi-l =

= t; - &%, til that the right sides of Egs. (1) are constant and

equal to . X (Lo wy (o), fia) . Let us write:
X =..t_ + Fo (20, wg, 1) AL (4)
With the variation u, €U 4 the end of vector El describes some

curve in phase space, which is the locus of polints dttained

at the time instant t4 = ty + 4t. By considering each point of
the curve thus obtained as the initial point for the subsequent
motion, let us write the two-parameter family of curves:

P=2 X0 dp Mg} = Xy (X% ug) - fy (Bits tim1 L) AL ‘ (5)

The locus of phase space attained at the instant t4 = tg + 14t
can be obtalned, by constructing the envelope of the famdily (5):

i = 2, _{l {‘i’a: Uy = :’Ef ()?Us Ly “:ﬁl (), (6)

where the control ud Cuo) transferring the object from curve (4) /27
to envelope (8) is éeflned from the equations [6]%:

—1

L—~2 CD(x" uo, ui_,J_l(Cn a(ix )!i—() \\ (7)

Expressions (5) - (7) can be written for any i > n.

Irhe possible nonuniqueness of the solution to Eq. (7) does not
play an essentlal role here, since the selectlion of the corres-
ponding values‘uﬁ;l is usually determined durlng the actual

process of solving a specific problem.
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Let us show that the controls given by the solution to
Eq. (7) are optimal. As we know, an extremal trajectory must
satisfy not only Egs. (1), but also the Euler-Lagrange equations:

_gt_(ff_)_.ﬁi_—,o, b=1,2 ..., n+1, (8)

where the expanded function F for this praoblem 1s of the form:
Fe@@E—D, (9)
by ='{ll(t),Ak2(t)} is a vector whose components are variable
cofactors.

After uncomplicated transformations, system (8) can be
represented as:

(A% = 0 (10)

For n = 2, the matrix (A) is of the form

_ [ OF a [ d N\ o
(A)_(du I(T)"(a_x) Té‘)-i (11)
In order for the system of homogeneous equations (10) to have
5 nontrivial solution, it is necessary that |A| = 0, from whence

we get the differential equation to find the u(t). In particular,
when n = 2, we have

|
& (-3 a2

Using relation (5), 1l&t us rewrite (7) as:

A AN ofF |, d [ oF
(du +(a;) o A ‘W‘FTE(W)

dt)(:o. ; (13)

Combining the columns on the determinant thus obtalned and then
letting At approach zero, we arrive at relation (12). Thus,
Eq. (12) 1s egquivalent to Eg. (7) and the value of the control
given by it is optimal. Here the surfaces (in the case n = 2,
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they are curves) (6) are the surfaces of the level of a Bellman
function minT . For the problem of dimensionality n = 3, 4, ...,
we can get an equation analogous to (7):

af 3
q)(x uon ul, snvy Hn 2 t—l)-“—’(auu Tau_fl' v vt 6uf__2 au: 4 )’ / (lu’)

defining the optimal control at the i-th (1 > n) step uf_, =

= ¥ -
ui“l(uo, Ugs «ens un—2)’ as a function of n = 1 independent

panameters characterizing the speciflc extremal; for example, the
values of the controls for the first n - 1 steps can be these
paraméters. Af each step 1 =1, 2, ..., let us dlrectly calculate

- ox,_ - '.¢ —
JEL_z =L Ap and ( Oxi ) :(”_L( %F4)Ag\ . The remalning /28

duy_ Oud;_y %, 12X

i |

. *im1
derivatives 9%, /Buk, k=20, 1, ..., n.- 2 appearing in e;pression
(14) are defined by the recursion formula 0x; ==( I ) i1, 5

rJu,L. ax_f--] duk J

using the values of the same derivatives calculated for the pre-
ceding step.

The procedure is repeated for successive 1 up to some 1 = m
at which:

min mix §(x, x,), |

b Ueyentin 3

; (15)
is attained, where ¢ is the minimum distance (for example, in
the sense fxi - xLI from the i-th envelope to the points of

the surface L(xL) = Q.

Using the m envelope surfaces thus obtained, let us construct
the optimal control u*(tf) in the form of the sequence up_y,lujes,

<iv; Traversing the envelope in the reverse dlrection beginning
from the point xy given by (15), as is usually [2] done in
algorithms of dynamic programming.

Computing the envelopes requires storage of (n - l)-dimensional
tables, 1l.e., the dimensionality of the problem 1s reduced by one
compared to the classical algorithm of dynamic programming. In
several cases the advantage here proves to be quite substantial,
in_spilte of the necessity of computing at each step n? derivatlves
(8T/9x) and n derlvatives 3f/du. Additional advantages of this
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method are provided by the fact that in most practical problems
the envelopes are deliberately quite smooth surfaces and their
approximation poses no difficulties.

Let us note that when we use, instead of (7), Eq. (12)
directly obtalned from the Euler-Lagrange equations, the
computational advantages are lost owing fo the necessity of
additionally computing the derivatives of higher orders (for
example, even for n = 3, instead of n(A + 1) = 12 first-order
derivatives, we would have to compute (n/2){(n + 2) (n + 3)i= 45
second~order derivatives and as many third-order deriwatives.

In conclusion, let us consider the problem when the set
U does not colncide with the space of smooth functions, and we
will assume that

U={u aggub, a;’:b}.{

is glven. In this case, with reference to property (3}, the
optimal control at each step is defined as u}_,, if Eq. (14)

yields u.€U/, and o Sieminlen, —w [0, Af OB SV
#i—| ! !

The method of independent actions. Let us examline a system
of n material points with masses my {i=1, 2, ..., n}). For an
arbitrary instant of time tps let us assume that their positions
Tig and velocities Vig are known with respect to some inertial

rectangular coordinate system Oxyz. It is required to determine
the parameters of the motion of each material point of the
system at an arbltrary Ilnstant of time t from known initial
conditions.

The equations of motion of each j-th point (j =1, 2, ..., n)

considered in the system in the selected coordinate system are
of the form: ) n -
fi:_zk’: raf_- "
i: ‘

re=l -
l

! (16)

Lty —r L =12 ..., n
* Al
ity = Jm,,

where f is the gravitational constant.

Let us deflne the trajectory of motion of the j-th point over

some time iInterval (t, t + At) with a hodograph, which describes
the linear comblnatlion of radii-vectors of the Ilnstantaneous
positions of this point on trajectories defined by the equations:
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= 5.‘,
(pf)i‘ = ke‘ "_i" ’

L (17)
Pii = (05 — (p)p is=j.

Here, at the time ty of the beginning of the s-th step of the
computation, the following conditions are satisfied:

(51')1' |s = ';," (zs) = }fﬁ! {?)1)1 L- = ;-1' (ls) = ';L'Sr f

(_'af)f is = a}’ (ts} = 51'5' (ai)f |s = ai {fs) = afsv i

where (pj)i, (VJJi, (pi)J, and (vi)j are the instantaneous values

of the radil-vectors and velocities of the J=th and i-th points,
respectively, in the selected coordinate system when they are
in isolated interaction.

We will select the computation step Atg from the condition
that the inequality

- - - o
,rf-‘-(pf)fts\(\‘/lrf_rl'fsv t#}l
is satisfied..
This enables us, with reference to (17), to write the

equation of motion of the j-th point of the system as a computa-
tion step in the form:

- v |
ff=—Ek="—'.: (18)

-3
= P

The solution of Eg. (18) is of the form:

n

i X @ — = 2) s+ 3 — 1, (19)
inf -
n -
- %} (O — {1 —2) Ve / | (20)
y ‘
to< < AL !

- The parameters (E&)i are defined from the final relations of
£he ﬁh§3f§ of Keplerian orbits [1].
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The method of [letitlous fmassés;' The formulation of the

preblem is analogous to the foregolng. Let us imagline the
desired motion of the point mj ,as occurring under the influence
of one attracting polnt with Ilctitious .variable mass M;. We
define the position of the point M; in the:selected coordinate
system by the vector R; (Fig. 1), %

my relative to Mﬁ ~- by the vector

nd the position of the point

pr=7i—Rp (21)

We can wrilte the equation
of motlon of the point m
relative to M; as the equation
of a two-body problem:

- M._*_m.__ﬂ |
o= —f——p (22)

! |

Consldering that:

E’?“Fj—l—ﬁi- 1
!
we get /30
l
s = M+ mi ~
r=Ri—f—— -~ P (23)
Fig. 1. System of n material , Py o

points with fictitious mass.
Comblned examination of Egs. (16)

and (23) leads to the relation:

‘:' A!i-f—-m} _ ri -
Ri—f— Pf'=‘-2é;—r’i, ii (24)
pi i=l r?f :

Parameters My and Fﬁ are functions of ki and rjj, however at the

- computation step Atg théy can be regarded as constant, by setting
p; as the variable. Then Egs. (23) and (24) are reduced to,
réspectively:

r,=p;==—f o P ] (25)
My+mj — X ;ii Q‘
f p;=2m¢7,ﬁ—- (26)

p-} i=1
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Let us define My and ﬁﬁ' Denoting:
>m-t =B, |Bi=8

based on (21) and (26) we get:

- - Bj M-+ my
=hi=F ) TE 27

To find Ms;, let us use the conditions defined by the
continuity of The gravitational potential. These conditions
are analogous to the conditions for the constrained three-body
problem (10) and are of the form:

1) Mj = my when rji = 0;
2) BMj/Brji = ( when ryq = a, 1 # 3
3) Banfarzj = 0 when rﬁ==nk(m£y€=5ﬁs.a\

i my,

“k"_-—l, 2'. ve. N LoEk; mi\(mk.\

where ry g aiﬁ the radius of the sphere of action of point my

relative to the polnt my, which is the maln attracting center
for m;. For example, fgr the actual system Sun (m;), Earth (m2),
Moon %m3), and SC (my), condltion 3 can be represented as:

v

I

"l 62M4 . . mﬂ -.-... i
37) ” = Owhen "42—"41(';”1—) =~rs.a

4]

v

3") EM, - my \F
) ma_omwnm*”4FH =fs.a

L

where in the case 3', in determining the radius of the Earthts
(mp) sphere of action, the princilpal attracting center 1s the
Sun (m1), and in the case 3", in determining the radius of

the sphere of action of the Moon (m3), the Earth i1s the main
attracting center.

The relation for Nﬁ, which in the general case is of the form:
:—-§ {mfir%)

n
T —1
2.! (mnf /'?")

=]

M; =

s i (28)
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satisfies conditions 1) and 2), where p and g are positive /31
integers satisfying the inequalities
p>0,q>1 (29)
To satisfy condition 3), by virtue of Eg. (28), the

following relation must obtain:

ro Q“l._ﬂtln [=1,2 ..., n iskj3=L

gl im‘?“ (300

o

Considering that in actual problems, the sphere of action of
point my is defilned in the gravitational field of one principal
attracting center my >> my, without allowing for the small per-
turbations of actions of the remaining system points, we can
write relation (30) as:

R
i 2(%__:_)4, (-::—i) ¢ f',ik. ‘{; (31)

Relation (31) satisfies condition 3) for:

iy =1 (32)

(4+1

il B | (33)
q

Based on (29) and (33), the values of g must be multiples of 5,
and (32) is satisfied as q + . When q = 5 or q = 10, the error
of computation based on formula (31) is the limits at which
condition 3) is satisfied, equal to 0.08 and 0.02, respectively.
As shown by experiment, for the values p = 3 and q = 5, a

high precision of calculation can be achleved.

Optimal algorithm for the stabilization of the motlion of an
artificial satellite in orbit. As the criterion of optimality,
let us examine the functional

Y

1= {aldt,

t

equivalent to the energy expenditure in control.
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If the motion of the artificial satellite of a planet (ASP)
is defined by system 1, where the control u appears linearly,
then with reference to the constralnts:

' —#<0, (34)
@ =<0 (35)

the problem can be solved by using the constralned principle of

the maximum [4]. In this formulation, this problem is a generaliza-
tilon of the known solutions [4, 5], since here instead of the
constraints on control (34), we consider the requirements Imposed

on the precision of control (35).

In this case, application of the mathematical apparatus of
the constrained principle of the maximum is simplified, since the
optimal trajectories only touch the boundaries of the domain
(35) of the admissible changes in phase coordinates. Thus, to
the necessary conditions of the principle of the maximum [5] are
added only the conditilons of discontlinulty at the point of
tangency for conjugate variables.

Bearing in mind that the ASP is acted on by perturbing
moments, which by their nature of change are either close to a
constant, or else proportional to the phase coordinate, 1t is
precisely these two types of moments that have been examined
as the right sides of the system.

The following results were obtained. The optimal algorithm
of stabilization for ASP is a pilecewise-constant functlon; the
optimal phase trajectorles are piliecewise-smooth functions and
form convex cleosed demains. 'The nodal points at these:trajec- /32

tories correspond to the points of control surface switching. )

Figure 2 1s a phase portrait of the optimal trajectory for
the case when a moment of the form M = A1x + A, acts on the ASP,
where A7 > 0 and Ay > 0.

The phase plane 1s divided into two domains: @, and Q5.
The domaln @y lies to the right of the curve ABCDE. If the
phase coordinates of the ASP 1lie in this domaln, the control
must be switched on and u = -1. The domain {, lies to the left
of the curve ABCDE. The inltial positlon of the ASP corresponds
to this domain, the control 1s absent, and u = 0. The curve
ABCDE is the switching line.

The resulting algorithm of the stabllization of an ASP
that 1s optimal for the case when perturbing moments of these
kinds act on the satellite can be used also in setting up the
stabilization algorithms for more complicated kinds of per-
turbing moments.
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Problems of optimal control with
functionals dependent on intermediate
values of coordinates. In the

< classical formulation, these varia-
tional problems were first presented
in the studies [7, 8]. Their
application to the solution of varia-
tional problems of descent 1Into a
planetary atmosphere led to the

! necessity of analyzing complex
multidimensicnal boundary value
problems that are not amenable to
the analysis being examined here.
This complexity was caused by the
nonlinearitles of the differential
equations of motion of the ASP and by the use therein of functions
of the aercdynamic characteristics of the ASP that cannot be
analytically represented.

L
=
N

AR TIT

e
=

—

R

Fig. 2. Phase portrait of
optimal trajectory.

Analysis of problems of this type was carrled out for
simplified equations of motion of an ASP. It was assumed that
the planet is a sphere with a Newtonlan central potential; the
atmospheric density is an exponential function of altitude; the
extent of the descent trajectory is small compared with the
planetary radius; and the aerodynamic characteristies are constant.
The system of equations of motion of the ASP was reduced to the
form:

PN
i LT =R
— = %athy, ‘
"‘i'ti ] u21
o wyl—w
ar. o w ‘ 6
o BR O pyT—e ' (36)
de 1 w a—(u g i
L Tdp R pyT—uf LA !
| at 1 . 1
dp  BYER p¥ Ul —uw?)

b

where p is the density of the planetary atmosphere; K1 and kp are
the aerodynamic coefficlents; R iIs the mean planetary radius; £ is
the acceleration due to the force of gravity; v, w, u, ¥, €, and t
define three coordinates of the ASP center of mass and three
components of the veloclty vector of the center of mass in the
coordinate system assoclated with the planet and with its

origin at the center of attraction. The controls ujy and us are
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assoclated by the relation u% + u% = 1. The functional belng

optimized for these problems is represented as: /33
[ == oy, Ugn -y By (37)

where the parameters v, ... £y correspond to the intermediate
value P1 (which in the general case can be determined).

Analysis of the system (36) in several cases makes it
possible for a specific form of funetional (37) to obtain an
approximate analytic solution of the optimal problem and to
investigate its main features.

As an example, let us consider the motion of an ASP in the
vertical plane; we will select the control from the condition of

the minimum

03
w

= o=, Y
o PP T T e
[ X

-
= BR

where p; 1s an assligned quantity in the interval |pO - pkl' The

equatlons of motion in this case will be of the form:
duv . o

ap T T MTYTTES
!
L |
I T %t |
!
d - 1 w :‘!
dp R e , (38)
di 1 1
Pl IR pr Uil —wy ;
Yon. |4l < L. !

We will seek the solution for the féllowing initial and final
conditlions:

vipy) =Cy, @w(py) = Ca, .
L{pe) = Cy 7 '191'\') =G, g} = Cq \‘~\

where Cy, Cp, C3, Cy, and 05 are constants.

From the necessary condltions of optimality [7] we get the
result that the optimal law of variation of control is the
plecewise-constant function:

uy = signy
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where the function ¢ continuous over [po - pkl and equal to zero

at the endpoint is defined from the solution to the differential
equation:

dv V dh : i ;
% = — (1 —A) —ap—/w{i — @) on [Py =+ ol
. vA 2 : “
"gi)l": K%l’lw(l —w?) on [plTpKI' '
A = const.

Analysis of this equation shows that there is only one
peint of a change in the sign of the function ¢ and, therefore,
control uj has one switching point. We note that for the
resulting control the first three equations of system (38) are
Integrated to completion, and the last -- in quadratures.
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USE OF THE FINITE-ROTATION VECTOR IN ONBOARD
DIGITAL COMPUTERS FOR DETERMINING SPACECRAFT ORIENTATION

A.P. Panov

The problem of determining the orientation of spacecraft (8C)
relative to inertial space using digital onboard computers (DOC)
is one of the most specific problems solved on board a 3C with
integrating rate transducers hard-mounted on the SC body [1].

The specific details of the problem include the fact that
the primary integrated information on the SC attitude does not
permit the use of ordinary mathematical methods for the numerical
Integration of differential equations of the SC attitude and
requires the use in the DOC of specilal algorithms. This specific
feature is aggravated by the fact that the algorithms used for
these purposes must ensure the determination of the SC orientation
with a minimum volume of computations and occupy a minimum
volume in the DOC storage.

There are several computational algorithms for determining
the orientation of a SC using the three Eulerian angles, the
four Redrig-~Hamilton parameters (RH) -- quaternions, the four
Keill-Klein parameters, and the four direction cosines [2-5].
Here the highest preference [4-8] 1s glven to the use in the DOC
of algorithms for computing the parameters RH, since they require
the smallest volume of computations for realization.

The orientation of the SC can also be determined by using
the finlte-rotation vector. Use of the filnite~rotation vector
in the DOC instead of the RH parameters reduces the volume of
computations by 30%, since in this case it 1s suffieclent to
compute only three parameters -- the projections of the finte-
rotation vector.

As we know from the theory of finite rotations of a solid
(91, the finite-rotation vector_ has the direction of the unit
vector of the axls of rotation e, equal in magnitude to the
doubled tangent of half the angle of rotation y and is of the form:

-, %
p=2etlg—5- L (1)

The vector 6 uniquely determines the positlion of the body
relative to a fixed (inertilal) coordlnate system, and from its
projections onto the axes of the trihedron Oxyz fixed to the
rotating body we can find the direction cosines.
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Actually, between the projections of the finite-rotation
vector and the RH parameters [9] there 1s a relationship, which
can he written in matrical form as:

2

ézxi'a (2)

where 0,
o=|o,l, (3)

i,

Ay
h=|4,]|, (4)
A, \

ho =V 1= 021754 2, (5)
On the other hand, the matrix of the direction cosines

lzx ey lxz |\
L =[lyx Iy lyzl, 1 (6)
' \

lzx lz‘r’ I’IzZ

characterizing the orientation of the trihedron Oxyz relative to
the inertlal trihedron 01XYZ can be expressed also in terms of
the parameters RH: '

Ko+ A3 — g — 2, 2(hoh; +hA),  2(—AR, +2A), T
L={2(—hh+2h), M+a—22 32 20, +hA), || (7)
L 20uhy + 000, 2(—hh, +A0), M4 A — A — A

The Joint solution éf (2) and (7) is the matrix L in terms of
the projections of the finite-rotation vector:.

L =MLP,
1 (8)
where 22 = : :
b (034 024 82)
~ s e f 1 (9)
I (03— 05—0), 0.+ 500, — 0, 0,0,
1 ' 1 . 1
P: _{}2—'}_?0:’03' 1 +T(-—-ﬂ‘§—,—ﬁ;—"ﬂ§), ﬂx+7{}yﬂz1
1 o oa a a 10)
ﬂy + —;" ﬁzﬂx’ = ﬂx + o ﬁyﬂzv 1+ T (ﬂ'z -9 = y),'} (

/
/
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To compute matrix (7), it is required to perform ten multiplication
and 21 operations of the addition and shift type in the DOC, and
the computation of matrix (10) together with (9) can be carried
out by performing six multiplication operatlons, one division
operation, and 29 operations of the addition and shift type.
Computation of matrix L based on (8) requires the additional
performance of nine multiplication operations. We hote that
the matrix L is required generally for the linear transformation
of vectors, for example, for computing the projections of the
vector of the apparent velocity onto the axes of the inértial
coordinate system:

_W=Lrw (11)

r

where w is the matrix-column consisting of the projections of
the apparent velocity on the fixed axes:

ol |
@ =[w,],‘l (12)
w, i

and LT is the transposed matrix L.

In this case, the operations in the separate computatiaon of /36
(8) and (10) need not be carried out, but computations using
the formula:

W=APw), (13)

can be performed at once, and because of this, to golve the
part of the problem associated with determining the orientation,
it is sufficient to perform nine multipliications, one division,
and 29 operations of the additlion and shilft type.

As we can see, from the standpoint of the volume of computa-
tdons required in solving linear programming problems in the DOC,
the parameters RH and the projections of the finite-rotation
vector are approximately equivalent. To solve the problem of
determining the direction cosines of the axis of the SC finite
rotation providing the alignment of the fixed axes of the SC
with the coordinate system specified in inertial space, the
parameters RH and the projections of the finite-rotation wector
are also equivalent, since:

1
A= ! R
dVotrin | Vegeon o

(14)
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The preference for using the vector representation of the SC
orlentation in the DOC compared with the parameters RH is
manifested only after constructing algorithms for computing the
projections of the finite-rotation wveétor.

Suppose that from the primary data integrating transducers
informatlion on the SC angular motion arrives at the DOC in

discrete form:
0, tyHH \
=10, |= wdt,
@y g \ (15)

F] T

where w is the matrix-column consisting of the projections of
the vector of the absolute angular rate of rotation of the SC
onto the axes of the fixed trihedron:

o, !
(l):[z)}if]! 1 (16)

H is the time step of discretization, and ty is the arbitrary
instant of time, where 0; << 1 (i = x, y, zg.

Since the primary data (15) does not reflect the nature of
motion of the SC within the time interval H, we will assume that
it was obtained during one small finite rotation, which is the
resultant of all rotations made by the SC in actuality during
the time H. We can show that given this assumption, the
information (15) will reflect this small resultant rotation
with an error that can reach a value of the order of 0O(H3)
or 0(63), owing to the noncommutativity of the finite-rotation
components [5, 9].

Then the projections of the vector of the small finite
rotation A6 can be represented in terms of the information (15)
as:

where T :
r=Vorterter . (18)
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whence, after exganding tg x/2 in a power series, we get, with
the error (1/4)x20:

AB = 0 (19)
We denote the matrix of the projections of the finite-rotation /37

vector determining the SC orlentation at the beginning of step H
by:

ﬂh — UU..' !- f (20)

According to the rule of addition of finite rotations:[91],
ocbtain an algorithm for computing the projections of the vector
of the rotation that 1s the resultant of the rotations ﬁh and AB:

0=l —%(-)fﬂj:‘}_l _(ﬂ; ‘nh_%\éﬁh).; (21)

v
Here OF is the transposed matrix @, and € is the skew-symmetric
matrix, of the form:

(22)

Here we note that the error of algorithm (21) is wholly defined
by the error of equality (19) and by the error of the non-
commutativity of the information (15).

For a DOC not performing operatlons of division, from (21)
we can get algorithms of any order of precision. Replacing the
fractional part in (21) by a power series, for example, we get
the first-onder algorithm:

. , ! o s f \ o '
:{}:l]_{_T@ OhJ{ﬁh‘? h— _3"9{)\1 (23)

with the estimate of the error in the step:

év=a‘g-f8ﬂ} (24)
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the second-order algorithm:

_ i oy T I 1 2 . ‘.l - o
o= I+_f—0 by -+ < (© ﬁ,,,!{,),,_.i_e__T@.r..J. (25)

with the estimate of the error for the step:
86 = —(©70,)'+ 4 #6010 (HY). (26)

we can easily also form algorithms of the third and higher orders
of precision, however they require that we obtain primary infor-
mation not containing the noncommutativity error.

In scalar notation, algorithms (23) and (25) are of the
form, respectively:

l .
0.! = (] - k) lﬂx_h + 91 — (eyt"z,. - Hzﬁylfz)l (x, i, Z), \ (27)
. N
ﬁx=(1+-k¢~EWﬁnu+-9;—-{;‘a%,——Gﬁ@m] w,y.Zf\ (28)
Whe re k = % (exi}‘r-!’ + (’j.,- e E)zﬂz.h); /

(x, ¥, 2) 1s the symbol of cyclic permutation.

For comparilison, let us wrilte the algorithms for computing
the parameters RH [5]:

first-order algorithm
e = hen+ "'é— (Ohon + Oty 3 dezh \ (29)

1 . L.
Ao = Mo — o (Oxhx + ey"u' K D) (X, 4, 2%

second-order algorithm

gy = (1 — @e) Rt A o (O Ao+ © Ay — O ),
3 ' (30)
),0 = (I —_— % 62) A‘D,h_ —_ ;— (ex}‘vx’h + ey}uy’h + @z?ug.h) (x, y, Z),

where 02 = 6] 4- 9, 4 6.

As we can see, the first-order algorithms (27) and (29), from
the standpolnt of the required volume of computations, are
equivalent, however algorithm:(27) yields an economy in the DOC
storage used.
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Use of algorithm (28) instead of algorithm (30) provides,
when carried out in the DOC, besldes the advantage in the
volume of the required storage, alsc a savings in the volume
of computations, saving six operations of multiplication and
six operations of the addition or shift type in each step,

which is 30% of the total volume of computations using algorithm (30).
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OPERATING ECONOMY OF SPACECRAFT STABILIZATION SYSTEMS

N.F. Gerasyuta, Yu.D. Sheptun, and. S.VvoYaroshevich

Natural oscillations of spacecraft outside the atmosphere
when acted on by a constant perturbing moment have been examlned
by E.V. Gaushus [1, 2]. It is assumed that the orientation of
spacecraft i1s performed with a relay system, whose actuators
produce impulses of controlling moments that are equal in
magnitude.

Actual motion must differ from that consildered above owing
to the inequallty of the controel impulses, which can be due to
the imprecision of the manufacture of actuators or provided for
deliberately.

The inequality of the Impulses of controlling moments can
be expressed mathematically by writlng dimensionless equations
of motion as follows:

\ ';I‘JI“'“{‘L;J p
-8 for =1 j>m and _d
a jZ 5 <k
w=y 0| for < m 1>|”>f and N %>o_.)
!l+62 for j<—Li<—m and 4 >0,/

i=To+ 9 878,

Here ¢ and x are the controlled and controlling parameters; L 1s /3
the coefficient of the perturbing moment; and T and m are the
controller parameters.

The equation of the phase trajectory of a spacecraft is
of the form: :

@ — 5 = 2 (¢ + L)y — ). .

The phase trajectory in the plane (¢, ¢) is shown in Fig. 1.
The changes in the angular velocity of the craft when actuators

are switched on are characterized by the quantities m1ﬁlégdlf¢d.\-

and @, = s — Gua -+ 1L 8 # §,, then w, ¥ w,, and Aw =
B, =Wy Z Q.

Let us review the oscillational motions of the system and
examine the possible method of reducing the amount of energy

expended by the actuators of the system during regulation for
the case when there is no perturbing moment (L = 0).
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Aw.. Let us limit ourselves

n

ni Suppose w, > wy and Gy = Wy

fo the case when Aw < W . The phase trajectory of the possible
motions of the system 15 shown Iin Fig. 2. Let us call the motions
characterized by the trajectory sections 123 and 34567 the single-
impulse and double-impulse cycles, respectively. Let us select

as the segment without contact the segmerituofithe line of the
inclusion MM, for whose points the condition

o<V <oy Vg . ° (1)
is =satisfied.
NY4 1 Let us construct the polnt
l transformation of segment (1) into
‘\\ ‘ itself. The transformation is

~i+d SN defined by the recursion function
S =g :
[ +, AN .
‘2\\\f\\ A . (V) =V - de for V<:mh'

Fig. 1. Example of phase
trajectory of perturbing

motion (L # 0). The transformations defined

by the recursion functions a(V)
(corresponding to the double-
impulse cyecle) and B(V) (cor-
respondding to the single~impulse
cycle) are denoted by Ty and Tg.
| The form of the recursion
‘ funetions a(V) and B(V) is
i ; 4 shown in Fig. 3; a(V) and B(V) are
B S N L _ straight lines parallel to the
: A RN S S NV 4 bisector of the right angle, and

J 7' 1 therefore the simple transforma-

| tlons Ty, and Tp dd not have fixed
P péints. The fgxed points are

possible in complex n-multiple
‘ . ! transformations of the form
g N [ Ip, = Tq ~Tg, with the recursion

ol itbﬁ p | formula:

N
\M‘

G)’ B - - -
~ " EAN | fAW%mHmwm=V+m_4Mw_%,

Fig. 2. Phase trajectory of 1F
the motion of a spacecraft ; (2)
when L = 0, Aw # 0. /Aw = n— |,

58



Any point of the segment (1) (the coordinates of the fixed points
are random in nature) is a fixed point.

When condition (2) is satisfied, the control system performs
a natural-oscillatory motion; during the period of the natural
oscillations one single-impulse and {(n ~ 1) double-impulse cycles
occur. The ordinate of the initial point of the first double- /40
impulse cycle following the single-~impulse cycle will always
satlsfy the condition 0 < Vg < Aw. In the general case, the
function f5(V) describes the mapping of a cirele into itself,
induced by the rotation of each point of the circle by the same
angle. Therefore, to each rational wj/Aw there corresponds the
corresponding fixed points of this mapping of the corresponding
multiples, that is, closed phase trajectories of different
complexities, and corresponding to the irrational wj/Aw, there
correspond the closed invariant trajectories.

The ordinate Vg contlnuously changes in the range 0 < Vg < Aw;
during the control process, motions are_induced that are charac-
terized by the transformations Hn = Tg‘lTB, Hn+l = THTB' We can

show a Vp = pAw such that when Vy < Vp, the transformation I n+l
oceurs, and when Vg > V -- the transformation I, occurs.

. The duration of the sequence
| m-1{(m=n+1orm=n)of

double-impulse cycles and one
single-impulse cycle is defined

Vi

by the sum:
m—1 ’ m-= "IA_{,)AT ;
Y w, T 1 A — T s By )
fe =1, + l.ff: \,‘fu +}— ( w— vy — U — Aw Vo -+ ide

=l

el
|
Ll
’ where to(ti) is the duration of

the single-impulse (double-impulse)
cycle, respectively.

Fig. 3. The Koenigs-Lamereaux

plot (L = 0) The duratlon of the sequence

of cycles ty depends essentially
on the ordinate of the initial
point of the first cycle. This
function, plotted for the values of the parameters wp = 2, wy =
= 1.63, T = 0.3, and 4 = 1 is 1llustrated by Fig. bi.

Let us compare the amount of energy expended by the
actuators when wy = wy, and wy # wp. We know [2] that for an
wy = wp and Vg = w1/2, we have the largest number of on-switchings
of’ the acfuators and the largest energy outlay over the final
time 1lnterval. This case, as a rule, 1s used as the calculation
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T
P I ! case when determining the

I ‘ | required energy reserve.
ﬁl P ! : Fo% comparison, let us
r—~4 ? examine the ratio q = Q/Qe4

| /i l : where @ and Q¢ are the energy

“L"—“?“(f**_“i ‘ outlays during the time Tt

: W for wy # wp, and wy = wy = w,
|
|

respectively. In determining

a7 S : ij Qe, we will assume that w =
IR = inf (wiw,) and that the
AT ez 4wy | natural oscillations of the

system are symmetrical.
Fig. 4. Dependence of the duras:

tion of the series of cycles . The valges of q correspond-
ty on the ordinate of the initial ing to the different values of
point. Aw and calculated for wj = 1.67,
T=20.3, wp = w] + Aw, and
T = 10, are presented below:
5% o Y B o1
P P P PO

The quantity Vp was selected for each Aw by using the plot [ﬁ;
tx = t3(Vg) so that during the flight time T the sequence consist—
ing of (m ~ 1) double-impulse and one singlei-impuise cycles
occurred, whose duration was a minimum, ty = typin . The time

T = 810 corresponded to t % 5400 sec (the time of one revolution
of the satellite around the Earth). For the selected wi and wo,
during the time v = 810, 100 - 150 engagements of the actuators
occurs; 20-30 series of cycles with the duration ty = t3z(Vy) are
observed. Therefore, when Aw # 0, the energy outlays are
apprecliably less than in the case Aw = 0.

Let us examine the motion and estimate the energy consumption
for stabilization of the spacecraft when acted on by a perturbing
moment. Following the work [1], we will conduct the analysis of
motion in the phase plane (U,x) where U = T¢ + ¢; x = é + LT.

Then the equation of the phase trajectory can be written as

x2 - x% = 2(x + L)(U - Ug). The phase traJectory is shown in
Fig. 5.

Selecting as the segment without contact the line

U=l—o T =T 2~ LT <x<T2—LT,

we get the following equations for the recursion function:
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!@(.\C)= } x1+2Ll'=]T-—mlfor _x‘>_..1/rE—
e [ = V ——— S
f ‘ii \?(xJ = {w‘l_— "l Xg-—EIIE—l'*E‘_, _."(02 for. x<____'!.fE,:
Ey=2L@2—uT, L, =202 — w,T). f

(3)
|
Fig. 5. BExample of phase The transformations defined by
trajectory of the motion the functions 0(x), v(y), will be
of a spacecraft in the denoted by Tp and Ty, respectively.
plane (U,x), L # 0. We will conduet our analysis for

the fixed value wy > 2(2vVL = LT),
for which the function 8(x) has
no fixed point (the spacecraft

ﬁ osclllations are produced by
engaging both actuators).

Let us examine the effect of
the parameter Aw on the nature of
the motion, by varylng wy in the

| range 0 < wp < (2/T). Suppose

‘ w2 >>:wy¢é Then the following
motions are possible, corresponding
to the point transformations

|

\
\
e T \
,7/ a | o-o1nrgs (mo= 1, 2, 3,...) with
the recursion functions /m = @l .0 i,
Fig. 6. Koenigs-Lamereaux o
plot for the point trans- The diagram of the transforma-
formation My (L # 0). tlon W, is 1n Fig. 3. With
decrease 1In wp, the transformation

I, successively changes into the transformations Hm—l’ Hm—2’ e
m-f-2 :
I _¢ = Ty TYTG (2 =1, 2, vo., m - 2). If & =m- 2, we have

n, = TOTy’ which with further Iincrease in w5 changes into the
transformations .

For some value wp, the multiple fixed point of the simple /42
transformation y(x) is produced. The function y(x) corresponding ~
to the moment at which the fixed point appears 1s shown in Fig.
with a dashed line.

The equation of the bifurcatlon curve wp = wo(L) can be
obtained by solving the system of equations:

dy _
= | =1

X==C
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In the following, the multiple fixed point splits into
twe (larger and smaller); the larger fixed point disappears when

the equality,y[—PEl]‘=_—¢EI, from whence:

oy = LT +V 1T 4 0, —VES — 4L

The coordinate Cy of the second fixed point decreases to
the value

CM=V£T~:“'”“31'L {4)

If w, ¥‘g== JEZ - p. » Where w¥ is the value for which equality (4)

is satisfied, phe t%ansformation Ty 18 impossible; metion «
commences, whose phase trajectory is illustrated by Fig. 7.
Analyslis of this motion 1s conveniently done by adopting as
the segment without contact the line

‘U.z—-l—{—(uzT,“ VIEZ-‘-_G)l{x{G‘ ’ (5)

The recurslon formulas written with respect to the segment (5)
are analogous to the funections f£(x} (3). Analysis of this point
transformation will not differ from the analysis of the trans-~
formation Iy = T%flTY. Therefore in the following we will limit

curselves to considering the oscillations characterized by the
recursion functions f(x).

We will make the analysils
of the stability of the periodic
motions of the system. The
stability of simple fixed
points of the transformation
Ty according to the Koenlgs
theorem follows from the fact
that for any values of the
system parameters and any
values of x, the condition [3]

_dBx) _ x o
o=~ T T raer

Fig. 7. Example of the phase 1s satisfled.

trajectory of spacecraft motion, The multiple fixed point

if m2<]/tﬁ-—5p? of the simple transformation Ty
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1s semlstable., since:

dy (¥} __
hy=—g = b

The larger fixed point ajp of this transformation is always
unstable (Ay > 1). The value of A+ for the part as contlnuocusly
decreases with decrease in wp, and therefore, the point can
become unstable only when AY < =1.

Let us find the *Y for the smallest coordinate of the
polint PR

s . 97 [0~V (VE — o —E]VE —w) :
v = = e o
- o F=Ca V[we ~— V(I/E:— ) — B+ By ]"j (VEl —w)t—~ L 1
From the equations of the fixed point y(x) = x, we get: /43

i

~os -V 1o, —V VB, o B4 By = 1V F o,
ma"—V-(VETz’fml)z"—‘El.:O, : /

whence AYix=C = 0 and, therefore, the point az 1s always stable.

m
For the complex transformaticons Hm and Hn’ the functions Am
and hn are defined by the formulas [1]:

m—2 ;
. m &y (8] T 49 [ (2]
o de — dx l;]l de ! \

i
!

n—I
o= din _ 49 T avifi (]
m oo Tlome

Here fi(x) = Ti_l[e(x)].m

Analysis shows that_km and‘kn take on extremal values when
x = Cp, where Cp 1s the coordinate of the fixed polnt corresponding
to the parameter wp = 0.

If wp = 0, then y(x) degenerates into 0(x) and, therefore,

|
P e, = Rabmc, = [T52 £, 0. |

i=l
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Here F; = einl[e(XO)]'
Since f%g < 1 for any values of x, then |2 ety = R lrme, << 1 .

This implies that with change in wp, the fixed points of the
transformations My and I, do not change theilr stability. Here
the larger fixed point 1s always unstable, and the smaller ig
always stable.

Let us examine the change in the complex oscillations of
& spacecraft for the example of the transformation Iy. The

function fﬁ(x) is defined in the interval sup[-fg(—#El)],—fEl <

<X i'inf[fgec-JEl)j,Sﬂguwhere S can be found from the equation
@(S) = —VEl-

With decrease in wp, the structure of the phase trajectories
bringing about the transformation Mn changes. The instants of
thange of structure (bifurcation moments) are defined by the
generalized equation:

Ox{v (8 ()]} = R,
K{'_‘.’{ ()1} (6)

where K, r, and R take on the values m - 1, 0 and -/E] at the
moment of dnception of the transformation Hy; m - 1, -v/E7, and
~/E7 at the moment that the fixed point of the transformation |
disappears; m - 2, —-x7 and xj; when the double fixed point appears,
from which subsequently the points al] and ap emerge (aj > an);

m - 2, 8 and 3 with the disappearance of the point aj;; m - 2, 0,
and -vE] at the moment of the inception of the trans%ormation Ty-13;
m - 2, -vEy, and -vEj for the disappearance of the point as.

By solving Eq. (6) for the parameter ws, we get the
generalized equation of the bifurcation curves:

| 0p = (M+ L)+ VM F LT —N =3 L, (73
where M=V[@ r))*—E,, ja_nd ‘-N"‘-:ml—_l-éx‘(R).

The function ©(R) realizes a transformation that is the
inverse of Q@(R). Using Eq. (7), we can plot bifurcation curves
wp = wp(L)} that enable us to determine the nature of the oscillatory
motions of the spacecraft for assigned system parameters.

As an example, in Fig. 8 are shown the functions wo = wo (L) /4l
calculated for the transformation Ilp. The change of complex
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oscillations of other kinds occurs analogously. An exception
is represented by the oscillations corresponding to transforma-
tions ITy.

The value of the function fp(x) at the moment of inception
depends on wp and varies with change in wp. The funection ff(x)
is defined for the values of x belonging to the interval:

sup [— fu—1 (— V'EY), —VE] < x<inf Fet (= 17E}), SI.

If ¢Un > 0, then with decrease in Wy the multiple point of

transformation IIn is formed, which divides into two fixed points
aj and a, (larger and smaller). The later fixed point disappears
when the condition aj = inf[fn_l(—fEl), ¢] 1s satisfied, which is

equlivalent to the condition of the simultanecus observance of the
equalities fn(al) - a; =0 and fn_l(al) + “El = 0. Cancelling out

a1, we get £ [v(-vE])] = -vE] or £,(¢) = ¢, where ¢ _ = Y(—/E;Lf

Fig. 8. Bifurcation curves of the point
transformation I»:

1. Funetion wg(L? for the moment of in-
ception of the transformation [l =

= TyTe; 2. as above, for the moment of
the disappearance of the fixed point of
the transformation I3 =‘TyT%;\3- as

above for the moment of the appearance

of the flxed points of the transformaw-

tion Eo; 4. moment of inception of the

transformation H3‘=,T2T@; 5. moment of

the dlsappearance of fne transformation
Mo.

If ¢, < 0, then
there 1s no multiple
and larger fixed pdéidnts
in the transformation Ij.
The smaller fixed point
1s initiated at the
instant Bg when the
equality “"fp(¢) = ¢ is
satisfied.

Using the Koenigs-
Lamereaux plot and the
generallzed eguation
(6), we can establish
the sequence of the
occcurrence of the bi-
furcation instants,
by showing that this
sequence depends on ¢p-.

' If ¢, > VE1, the
disappearance of the
smaller fixed point of
the transformation
Hp-3 occurs earlier than

the appearance of the
multiple fixed point of
the transformation Iy -
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1f ¢n < YE;, then the disappearance of the smaller flxed polnt of

the transformation Hn—l 1s preceded by the appearance of the

multiple fixed point and by the disappearance of the larger fixed
point of the transformation IIn. In the latter case, the existence,
for the same value of wp, of fixed points of two neighboring
transformations I, and Ih—1 1s possible.

Let us examine the dependence of the energy expenditure in
the orientation of the spacecraft on the difference Aw = wy - Woj
we conduct our analysis for the point transformations:of the
type Tp, assuming L > 0.

In the periocdic motions corresponding to the fixed peints
of the transformations I, = T6T$-1, the number of engagements

of the actuators producing negative control impulses is one greater
than the number of engagements of the actuators producing positive
conbrol pulses. Hence there follows the formula for determining
the period of natural oscillations:

Ty = - loy + (1 — 1) dol, (8)

|
|

where n is the cycle multiplicity.

We will assume that the energy outlay in a single engagement
is @7 = rwy, and gz = rwp (r is the coefficient of proportionality).
Then the energy outlay during the flight time t (t >> Ty) will be
defined by the formula:

rinemy, = (n—jo]f
Q= 7
With reference to relation (8), we get: /4
0= r [, %‘: (n — D] L
oy + (01— 1) Aw \

If w3 = wp, then Q@ = Qg = r(2ng - 1)tL, where ng is the cyecle
multiplicity when wj = wp. Then the relative energy outlay will be:

= 0 ey == (0 = 1V 0y
Q= @y oy i — D Am]2n,— 1)’

Figure 9 shows the dependence of the relative outlay on the
parameter wp (w3 = const). The function Q(uwp) is discontinuous
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for the values wo corresponding to the transition of oscillatory
motions from one type to another (from the transformation N, to
the transformation Kn_l). Here the number n and the outlay change

in jumplike fashion.

7 ; - | P
: ! 7 ! |
I T i
' o : [
i : / 3 ;

‘ | g
! z 7 o J

Fig. 9. Plot of relative energy expenditure:
1. Function Q(uwp) for the transformation T ;
2. as above, for the transformation Ty =_f§T9;

TeT
Y
r

fl

3. as above, for the transformation I3
4. as above, for the transformation Ty

03

T TB‘

H

The functlon Q(wp) is calculated for the value wy = 2, L =
=aconst > 0. Therefore point A (see Fig. 9) characterizes the
relative expenditure if the actuators produce upon engagement
the same control impulses; the number of engagements in the closed
cycle when w) = wp = 2 will be ng = 7, and the relative expenditure
] 1. The varia%ion with time of the spacecraft angular ccordinate
) ¢(t) is shown in Fig. 10 a.

If wp = 1 and 2, then as follows from Fig. 9, the oscillations
are characterized by the simple transformation Ty; the phase
trajectory closes in two engagements of the actuators. The
relative expenditure is much smaller than in the case ¢, = 2
(Q = 0.8). The plot of the variation in the angular coordinate /46
for wp = 1 and 2 is shown in Fig. 10 b.

This analysis affords the following conclusions.
1. When the dynamics of the spacecraft outside the atmosphere
is analyzed, it 1s useful to allow for the inequality of the

impulses of the control moments (Aw # 0) produced by different
actuators of the control system.
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Fig. 10. Plot of the variation
with time of the spacecraft
angular coordinate.

a. wp = wy = 2

b. wy =1, 2.

2. If the perturbing
moment 1s absent and Aw # O
is ensured, simple natural
osclllations are impossible
-~ glternation of open
double-impulse cycles with
one single-impulse cycle
occurs. Complex natural
oscillations are established
if the différence of the
control impulses 1s a multiple
of the magnltude of a single
impulise. Control systems in
which the contrcl impulses are
not equal to each other are
somewhat more economical
{(by a factor of 1.5 and
higher) than systems with
equal impulses.

3. For the case of the

action of a perturbing moment and Aw # 0, establishment of both
simple and complex natural oscillations is possible. The
appropriate selection of Aw minimizes the amount of energy :
expended -- the energy outlays in spacecraft orientation can be

reduced by 1l.5-2 times.
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PROBLEMS OF OSCILLATIONS AND THE STABILITY OF MOTION
OF MULTIDIMENSIGNAL ELASTIC AND ELASTOFLUID CONTROLLED OBJECTS

A.I. Kukhtenko, V.V. Udilov, and B.A. Gudymenko

Allowlng for the elasticity of a structure and the oscilla-
tions of a fluild in the cavities of a flight craft leads to
various problems in the analysis of oseillations and the stability
of motion becoming essentlally multidimensional. Let us examine
the possibility of using methods from the theory of the repre-
sentatlons of groups and the method of decomposition in solving
problems of the control of the motion of elastofluid objects.

_Application of the theory of group representations in solving
problems in the stabilization of elastic spacecraft. The theory
of linear representations of groups can prove of much assistance
in the study of multidimensional elastic space objects [1]. The
methods of the theory of linear representations of groups prove
applicable in those cases when the dynamic system under analysisa
is symmetric. Here, by system symmetry we mean the invarlance
of 1ts mathematical model relative to a specific group of linear
transformations. Orbital space stations..of.the type described in
the work [2], as well as cluster type flight craft [3] can be
classified as symmetric space objects. Solving a number of
problems (analysis of the frequency spectrum, of the stability
of motlion, and of optimality) associated with automatic control
of this class of objects is fraught with serious computational
difficulties brought about by the multidimensionality of these
problems. However, the presence of the properties of symmetry
of the system under study enables us to reduce the initial multi-
dimensional problem to a series of problems of much smaller dimen-
sionality, although to solve the latter, if they still prove to be
multidimensional, we have to seek other ways of overcoming the
"curse of multidimensionality." One such approach, known by the
designatlion method of decomposition, is described in the second
part of this article.

Realization of the decomposition of problems emerging in /H
the analysis of symmetric dynamical systems can be achieved by -
different methods, based on the theory of the linear representa-
tlons of groups. One such method (the "elementary cell" method)
as applied to the analysis of frequency equations of complex
rod systems has been desecribed in the work [4]. Essentially, the
method consists of isolating in the initlsl rod system its smallest
part, whlch when acted on by different elements of the symmetry
group the entire system can be "constructed.® For the elementary
cell thus iscolated, additional coupling equations are sought and
frequency equations are set up by known methods. The fullest
description of the elementary cell method is to be found in
the work [5].
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Another approach to achleving the decomposition of linear
ordinary differentlal equations, quadratic forms, and boundary
value problems corresponding to the natural oscillations of
complex rod systems, based on the method of projectionaoperators
known from the theory of linear representations of groups, 1is
developed "in’ the-works {61 — [10].

In order to actually demonstrate

The method of allowing for the
symmetry properties and to recognilze
all that can be achieved by apply-
ing group theory, let us examine
the supporting rod system of an
orbital space station (Fig. 1).
The system for stabilizing the

~ toroidal space station is examined

‘ in the work [2]. Our consideration
includes the analysis of the sym-
metry of the control object and
the structure of the equations of
Its elastic oscillations, and also
finding 2ll the simplifications
that can be achleved owing to the

Fig. 1. Configuration of a symmetry of the object, iIn the
station with the form of a problem of its automatic stabiliza-
regular hexagomnal. tion.

Let us first consider the properties of the object's symmetry.
We will use the equatiocons of motions of a deformable body in the
Lurtye form for the mathematical description of the control
object [11].

Let us assume that the object of control (Fig. 1) consists
of six monotypical rods rigidly connected to each other, each of
which is given flexural rigidity in the plane xz and torsional
rigidity. Let us fix the axis s with the k-th rod, with the
origin of reference at.the middle of the rod and oriented along
its axis of symmetry. We let a stand for rod length.

The formulation of the equations of motion of a deformable
body in the Lur'ye form is based on the assignment %o the
system of functlons approximating the vector of elastic dis-
placements. In the selectlon of these functions, the properties
of the object's! symmetry are also used.

The vertical dlsplacement of the polnts of the elastic axis

and the angles of rotation of fthe sections relative to the s axis
of the k-th rod can be written asv
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@e(s, ) = AEF O+ 4O 0+ 4O 6 O+ A9 (). (1)
B (s, 1) = A (8) 6 (1) + Ag(s) 67 (4). : (2)

The functions Ag(s) (% = 1, ..., 6) can always be selected so that
the followilng relations are satisfied:

06 Do = 2F O @ (5 Dicap = 5 O

]
Qe (5 5 = o () I}
!

dug (5 ) = @t (), —t—
& L:—alz o () ds s=af?

|
| (3)
04 (5 1) a2 =05 (O 0 (5 ) lsma = 0% - |

This can be achieved by interpolation by the beam functions or AL

by the Hermitian polynomials. In the latter case, the functions
Ag(s) are of the form:

A =21 +ST)(_L_L)2" M@=2.1— g+ 2]

1 42
)

|

i (4)
|

T
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L
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1
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15
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Let wi(t) stand for the vertical displacement of the k-th
assembly, pk(t) —-- for the angle of rotation rélative touthe
radial direction, and qy(t) -- for the angle of rotation relative
to the tangential directlion (Fig. 2). Then we have the relations:

+ V3 ] [ £

fhy = D] '?h_"g“‘ptzr CPLI-':“Q—%'}' 5 o wjzwk’ ( )
- _ V¥ ! - t 3 5
O,Q == o Fe41 + '2—pk+]t qjk = _qu+ + -1/2-...._ pk+]’ w;:wk_!_]_

Using these relations, let us express the deflection function (1)

and the angles of torsion (2) in terms of the coordinates of
the assemblies:

@, (s, !) = A(s)wy, + 4, (S}w@yy; -1 % Ay (s) gy — ";"Ads) Ge+1+ \

/3 & \
+ ]23 As(s) p,, + ‘12":2““14 (S} Petyy | (6)
no V3 '3
O (s, 1) = l;_—,l A, (5) g + “1"9-%- Ag () geti — ‘_l,— A, (8) py + _1_T A (S)Pk+l-1 (7
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The 'functions (6) and (7) constructed in this way allow us %o
satlsfy the conditlons of continulty of vertical displacements
and the angles of rotation of the assemblles relative to the
radial ' and tangential directions.

Let us convert from the
coordinates py, 4k, and wy to
other coordinates, called sym-
metric coordinates. These
coordinates can be constructed
by the method of projection
operators [1]. Use of sym-
metrical coordinates in the
expansions (6) and (7) leads to
a simplification of the equations
of motion of a deformable body.
Symmetric coordinates are close
to normal coordinates, and some
of them can even colncide with
the normal coordinates. Also
important is the fact that
seeking for the symmetrical
coordinates is based on the
symmetry properties of the
system. Let us examine these propertles in more detall.

Fig. 2. BSystem of coordinates
assoclated with the station.

The constructlion shown in Fig. 1 has six planes of symmetry
op (k =1, ..., 6), whose traces are shown in Fig. 2, and also
a gixth-order axis of symmetry, which colneldes with the z axis.
The presence of the sixth-order symmetry axis implies that the
construction coincides with itself for rotations about its
axis by the angles tk/3 (k = 1, ..., 6). These elegents of
symmetry give rise to 12 operations: six rotations C% (k = 1, vou,y

6) relative to the z axis, and six reflections 8 (k = 1, ..., 6).
The set of rotations C% and reflections 6 forms the groupnc6v.

The unit of the group here will be rotation about the z axis by
0 or 360°. The order of thils group is 12.

Now let us construct any unitary representation of the 24
group C6y. To do this, let us note that the functions py, qy, -
and wy can be considered as the coordinates of the 18-dimensional
vector x in the basis of unlt vectors:

=0 ... 1... 0, ef=(0...1...0) e2=(0... 1. 0

& G+k BTN ) (8)

Thus, Iin the 1l8-dimensional vector space L we have the repre-
sentation of vector x in the form:
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-
Il
4=

(Prel + qae] - wyes). i (9)

-
T

Let us define in L the operators @%‘and Ok (k =1, ..., 6) as
foldows:

% Clpq —— pd Chow — gt
Cter =ef , Chel=ef,, G =G \
~ ~ ~ !
= ¢ef Yo=Y (10)
0pt] = — €4 1o OWEf =€l jpa 0487 =G g0 \

In the expressions (10), we assume that

Relations (10} map the transformations of the basis unit vectors
(8) generated by the operations of the symmetry of group,.Cgy-.
It 1s not difficult to verify that the set of operators C%,uudk

forms the unitary representation of the group Cgy in the basis
(8). Knowing the unitary representation of the group, and:..also
the tables of 1ts nonreducible representations, which are pre-
sented, for example, in the work [1], we can expand the space L
into the direct sum of eight orthogonal subspaces:

L] S
L= ¥ Y&F, (11)

=] y=1

and find the basis unit vectors {eqgy} (B = 1, ..., my) of each
of the subspaces Eyy. Corresponding t'o the expansion (11) is
the representation of vector x in the basis eggy (¢ = 1, ..., q;
B =1l, vy Mys Y =1, ..., B8g)s referred to as canonical:

| qaﬂVEEEB?- ( l 2 )

The coordinates of vector x in the canonleal basis are called
symmetric. The index a in the notation of the symmetric coordinates
corresponds to the number of one of the nonequivalent nonreducible
representations of which the given reducible representation consists;
the index B corresponds to the number of one of the equivalent
nonreduclble representations of the oa-th type; the index y cor-
responds to the number of the symmetric coordinates transformed
according to one of the representations of the a-th type. The
numbers my (multipliclty of the nonreducible representation of the
qmth_type% and sq (dimensionality of thils representation) appearing
in expansions (11) and (12) can be found from the tables of non-~
reduclible representations and from the matrices of reduecible
representation (10): '
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my=my =23, My=my=2, m,=1rmy=l,
51352:2, SBZS-}:SS:SGZI‘

(13)

The data presented are sufficlent to construct the formulas
for converting from symmetric coordinates dagy o the initial
coordinates py, di, and wy:

Pp = —— ! M—U , ik — 1)

b3 [\fhu sin —.3'_ T F113 €08 ———5——+ Gy SIN 2 (k }f i
21 (k— 1)\
“+ G210 €OS 1(3 ) } -- (qaucos&n(k—]) ~F gg cosa(k— 1)), {
! ke 1  m(e— — '
gy = —E-(Q’Inl COS—T(T—).__(FIEE Sln_.__s_..l_) +‘?221C S.E.E._.k__...].l—— 1
; ' l (14) /50
on(k—11y , o (1 h—1) \ —
— a2 S0 3 ) KR Vr— ('?311 cos2a (k — 1)+ gy  cosa (k — f
1 E—1 k t 2 k l
T VE (4131 cos (_3)_" — uaosin ZEZD 4 g cos Z2EZ D |
k—1
— a3z SIN 2:((3 ))':" = (@321 COS 20 (k& — 1} +- gy oS (£ — 1)), ji

Formulas (14) express the functions (6) and (7) in terms of
symmetrlec coordinates. In order for the function (6) thus obtained
to be used in describing elastic oscillations relative to the
coordinate system xyz (Flg. 3) associated with the structure as
a solid, this system must satisfy the conditions:

6 ﬂfﬂ

> S m(s) w, (s, £ds =0,
k=" _ar2
5P Via . ne—1D nk—1 ’
m(s)uh, (8, f)( 7 sin 3 -[,-3305—3_)‘15:0’ (15)
b=l —af2 ' |
%‘ af? : 13 niE—1) Xk —1) z
A _g{gm ()@ (s ) (— 5~ €os 3 + ssin ——3-——) ds =0, |

e

These condltions lead to three coupling equations between the
symmetric coordinates:

glfhu + byg101 + bygs; =0, wl
111z + DoGueg 4 Baguge =0, 16
ST/ + caq.tfal =0, ( )

i
i
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where the coefficlents bj, bp, b3, ¢, and cp are expressed 1n
some fashion in terms of the intégrals of the functlons A@(S)
(£ =1, 2, 3, 4). Thus, if we take the Hermitian polynomials
(4) as these functions and assume m(s) = const, then by = 3a,
by = -lda, by = =51, c1 = a, c¢cp = 12.

Expressing functions (6) and
(7) in terms of symmetric coordi-
nates according to formulas (14)
and cancelling out the dependent
coordinates q131’ ql32, and q321

from the resulting expressions on
the basis of Egs. (16), we get:

hg s

D5 =3 T N0k a1
=1 f=1 y==1 \
t Mg Sgx e \
Oe(s: =3 > Oapy (9) qupy \l
Flg. 3. Planes of symmetry =t gl v=l g
and numbering of rods and (k=1'--” 6 m=2 m=3 m=1 m-~= 3(18)
assemblies. my=ra=1; 5=8=2, S=5=38=58=1 |

Nonreducible representations of group Cgy are also realized

with the functions %wv(); and Oy (9(k=1,..,6 . This enables
us to classify the functions ¢§BY(S) and eng(s) by types in
accordance with the nonreproducible representations of group Cgy.
Eﬁus, the functlons ¢§ll(s) and egll(s) (k =1, ..., 6) are
symmetric relative to all symmetry operations of group Csv; the
functions*ﬁ“(ﬂ,@ﬁyﬁhi G;Lﬁk" and O () (=1, .., 6}, are symmetric

relative to the rotations'aé, 62, and 62, and‘the reflections

31, 33, and 85, and are antisymmetric relative to the remaining

~

operations. The functions ¢gll(s) andﬁ@%ll(s) are symmetric
relative to all rotations and antisymmetric relative to all
teflectians of group Cey. The'functions Py (9), 5 and |, bfy, (5 (£ = 1,

L Ep=L2%Zy =12 » when acted on by the symmétry opera-
tions are transformed one into the other. This alsc applies to
the functions ¢%vﬁﬁ and , 8%, (sy (k= 1,...68=1,23y=12./
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Let us proceed to the direct setting up of the equations of
motlon on the Lurtye form [11] as applied to the object under
consideration.

Considering the method of reducing quadratic forms with
symmetric matrices given in the work [10], for the kinetic
energy of elastlc osclllations we have the expression:

6 s 1 Ta ©
T=73 3Tan Tav=-g 3 Abpdassfass - (19)
=1 y=1 B, ==t B
where s s af aj2 Y
1 H
Aﬂ' = — N z (S) (Pi . (5) + YI @ag,r,( B:ju‘, (S) ds ‘ '
pa _sa' = E} ( _:gﬂq—‘ fv & 4 _iﬂ o (20)

I, 1s the polar moment of inertia of the section of the k-th rod:
¥ is the density of the k-th rod; and F is the cross-sectional area.

The potential energy of the elastic oscillations is:

i} o :
n = 'S‘ by '1'7"? Mgy = —5— 4, L2
P P Betentare (21)
e o2 .- . ;
where - {'5‘ vier { 32(P§ﬁv(5) . T gy () ds L
Bl = S A £ Js5% 352 i ‘
Pl k=l —a/2 i
af2
Ca0kL (s a8k () ! -
B’y . zf'e (22 )
+ G‘ro ‘S ds ds. d‘q) ' !
a i

—ae . /

Efy is the flexural rigidity of the k-th rod, and GIp is the topr=s
sional rigidity of the k=th rod.

The potential energy of centrifugal forces 1n this case is
of the form:

o $ 3 o R 1 ~ '
. — 1 oz P
= 2 Enzv' Tay = 2 Q 2{ M TupyTas s (23)
a=1 p=1 B =1
where ai?
_ P Napy (D) Ogapy@
‘“_“‘21 j SE g 30
"P—l k‘-:l "-ﬂlz 9

aj2 (2}4)
—vi, 5 6+ (5) 8% ﬁv(s)ds)

—a/2
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@ 1s the angular rate of rotation of the station relative to the
z axis, and Iy is the equatorial moment of lnertia of the sectlon
of the k-th rod.

With reference to (19), (21), and (23), we obtain the
eéquationsg of the elastic oscillations of this control object
in the form:

My .
E [Aﬁﬁ’Q‘IS’v + (Cgﬂ' + szgﬂ') Jopyp] = Qaﬁv
=] .
a=1,...,6 y=1,..., Sq my=2, (25)
My =3, my=1, m=2, .
m5 = ms - l

Here Qugy are the generalized applied forces.

In setting up this equation, we did not make allowance for /52

the effects associated with rotation of the rod sections relative
to the radial directions.

From (25) we see that the system of the corresponding homogen-
eous equations can be decomposed into eight subsystems in accordance
with the splitting of the space L (11). The systems of equations
for coordinates from the subspaces Ejj; and Ejp have identical
coefficients and each contain two equations; the systems of
equations for coordinates from the subspaces Ep; and Esp also have
identical coordinates and each contaln three equations; for the
coordinates from the subspaces E31, E51, and Egy, each system of .
equations has one equation, and for the coordinates from the sub-
space Ely -- a system of two equations.

The structure of the characteristic equation corresponding
to Eq. (25) can be represented as:

det [ cfip + Lmfp — 0?Afp | = {det|chy + Qmif — 02412 x
% {det | cfih + Qmid — AR D12l + 2mi — 02AT) x
% det]| e -1 Qmi — w24l B (¢ + @mf) — w2A) %
X (el + @m — oA = 0.

(26)

From Eq. (26) 1t follows that the control object has two
serles of frequencles of free osclllations; symmetric coordinates
9311» 9511» @nd qg11 coincide with the normal coordinates; and
the forms correspondlng to them colndide with the normal forms
of the free oscillatlons of the structure. From Egqs. (26) we
can readlly determine the frequencies of the oscillations for
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these forms. To find other frequencles, we must solve two
characteristic eguations of the second order, and one of the
third order in w=.

Certaln simplifications owing to the symmetry of the control
object emerge alsc In the analysis of the closed stabllization
system. Thus, in the control of balanced forces that are applied
as shown in Fig. 2, and in the placement of transducers in
accordance with the symmetry group of the object, only the tone
of elastic oscillations of the degenerate type (Ej1, E12) will be
exclted. This fact simplifies the solution of the stability
problem, since the characteristic determinant of the corresponding
system of equations can be reduced to the block-dlagonal form.
Given another structure of the system of equatlons (for example,
each control moment is applied along each axis and an asymmetric
transducer arrangement is used) all tones of the oscillations can
be excited. However, employing the symmetry properties of the
object even 1n thils case facilitates the solution of different
problems of obJect contrel. Thus, the problem of stabillity of
motion can be solved by decomposing the characterlstic determinant
into blocks on the basis of the object symmetry (cf. the structure
of determinant (26) with subsequent expansion in the neighborhood
of the poles of these blocks as has been done in the study [2]).
Some simplification arises also in solving problems of optimizing
ebjects described by symmetric matrices. To solve these problems,
often the procedure called the method of decomposition is used.

If the control object is symmetriec, subdivision into subsystems

1s carried out in a natural way by converting to symmetric cocordi-
nates, which considerably reduces the volume of computations
required for taking account of the remaining interconnecticns.

An algorithm for solving the problem of stabilizing multi-
dimensional elastic flight craft with liquid contents. Let us
examine the perturbed motion of an elastic flight craft (FC)
with liquid contents in the yawing plane, characterized by lateral
displacement [sideslip] z(t) and yawing angle y(t)} of an object
as a solld body, generalized coordinates q.(t) (i =1, 2, ..., k)
of elastic oscillations of the FC bhody, ana generalized coordinates
rg (s =1, 2, ..., p) of osclllations of the overall surface of
the liquid in the s-th tank glven the condition that only the
first (fundamental) tone is excited in each tank. The system of
equations of motion in thils casenis of the form [3, 12~147: /53

. . . - k . n -
Z= ;2 - az'lbw _]_ azl]ﬂP -+ 2 (azq[q; + a‘qz_q;) -+ 2 (Iz,sfs - 0366,
i=] s=1

_ . ! . » .
V= GpeZ + apyp ok Guep + X (Geq g+ 2090 + X uer, - apsd | -
= = (27>
o e N £+ (1)2 . , i ) i % . i |
917 &g i+ Wy = @g2 - AL TR aqi’srs+ a?iéa’
S

- . ’ . . k .
rs _Ir' E'~’$'rs + mrsfs = arszz —l' arsti',"p ‘]I" E ar’qiﬂh

==t

(i=1,2 ...,k s=1,2, ..., . : 79



For heavy ballistic type flight craft with large aspect ratio and
a large. number of fuel tanks, allowing for the elasticity of the
body and the oscillations of fuel in the tanks leads to the
system of differential equations (27) being of falrly high order.
Thus, allowling only for one form of elastilc oscillations of the
body and one tone of oscillations of the 1liquld in one tank of
the FC increases the order of the system of differential equatlons
by four. Accordingly, developing methods of andlyzing the
dynamics of controlled elastlc flight craft with 1iquid contents
as an essentially multidimensional system of automatic control is
an urgent problen.

Let us introduce into consideration the 2(k + p + 2)-dlmensional
vector x with components

Xy =2, Xe=2 Xz= |, Xy = $,  Xed3 =
Xo g4 = Gy Xajean4s = g Outstn =
(i=1, 2...,k;s—1 2, ..., PN

Then, system of equations (27) can be reduced to the form:
X = Ax + b8 (28)

where A 1s a square matrix of order 2(k + p + 2), with the
following structure: the elements of the (2u - 1)-th row are

equal to zero, with the exception of the (2u = 1,2{i)-th element,
which is equal to unity, and the (2u, 2v -~ 1)-th and (2u, 2v)+ th
elements of matrix A are equal to the (u, v)-th elements of the
matrices M~1P and M-1N, correspondingly (g, v = 1, 2, ..., k + p +
+ 2); b - 2(k + p + 2)-dimensional vector, whose components with
uneven numbers are equal to zero, and those with even numbers are
calculated by the formulas:

— ! _ E
bou = m e + miDays + 3 mish

WJ -t 3‘10-5' \
l-—I i
(-1) , -1
Here m . are the elements of matrix M —,
-]
M= Fﬁﬂiﬂ@ﬂ@ ......... My Myo) "My |~ My (E, — Mmwaq {
— (B, — MgyM,,) "y (E — leMlﬂ)_l ‘
pofPui 0 ] v=[M¥ai 0] |
0 E ‘PEZ D 1 Naa
T — acr, -— N
- aﬂ'f: - a‘rf
MIB - a'-?:P: a'hf '
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-—a.I"?"‘ar’t_'aflql . —a, /54
j * [} =
MZI = [ . : N : , /
T T Oy Qg L — Qran
[4F ) anp alf?l ‘e ﬂ;qk -
pz  Ayy Qig, » oo Qyg,
N. — .
11 Qpe Qpy —gy -+ 0 \
_aﬁ'kz aqklb 0 s e ™ Eqk l
0 aw Qogy v Oz,
0 aW awl . awk
Pu=| 0 ag _(051 ... 0 ,
0
_ aqk¢ 0 P C!)i';k _

— i — 1p. — di .
Ny, = diag | &% pzﬂ_dlag{—wﬁs:f,

Ep4o and Ep are unit matrices of (k + 2)-th and p~th orders,
respectively.

The problem of the stabilizatlon of the unperturbed motion of
an elastic flight craft with liquld contents consists of finding
the control action & = G(xl, .ees Xz(k+p+2)) as a function of the-

components of the vector of state x, which would ensure the
asymptotic stablility of the unperturbed motion x = 0 by virtue
of the equations of perturbed motion (28).

The following algorithm for solving the problem of stabilizing
multidimensional elastic FC with 1liquid contents is proposed.

l. Let us isolate three subsystems in the multidimensional
system "elastle FC with liquid contents" under consideration:
1 —- "solid," 2 -- "elastlc body," and 3 -- "liquid contents.™
To thils representation of the dynamic system will correspond
the following block form of the notation of the equations of
perturbed motion (28):

ol B TSRS | A B
= A21A22A23 x(m 4 ¥ {8, (29)
R Ag Age : Ags v p®
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where

2™ = colon iz, z, P, P!,
x® = colon {gy, G+ Gur Ga)s
x® =colon{r, ry, ..y Ty 7ol

2. For each iIndividual subsystem:
K= Ax) £ 80 =1, 2, 3) (30)

the problem of stabilization is solved by cone of the known methods,
as a result of which the control actions (1) are determined as
functions of the components of each of the vectors x{(1): /55

59 o JeB 10 “ =12 3 (31)

such that the zero solutlion of each of the swubsystems

1 = (A 4 5K 2 (32)

will be asymptotically Lyapunov-stable.

3. The control actlon for the system as a whole is selected
in the form:

3 . . .
§= 3869l .., 2 = Kx,

Zo ‘ (33)
where the matrix-row K, as follows from (31) and (33), has the
following structure:

C K = (KK [((3)]' ‘ (34)

4. The stablility of the closed system of the object (28) +
controller (33) is verified by one of the existing methods.

It must be noted that the structure of the gain matrix K
depends essentially on the nature of the information used in
forming the control actions. Let us examine several typical
variants of the specifying of information concerning parameters
characterizing the motlon of an elastic FC with liquid contents.
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Variant 1. Let us assume that we are sble to directly measure
or determine by indirect means all the components of the state
vector of the control object. In this case, the submatrices
K1) of the matrix K (34) will be of the form:

: ) f
KU:{,&E_I)}?;L i=1,2,3 n,=4, nz'-_—.Qk, ny = 2p).

Varitant 2. If the components of vector x(3), which are the
parameters rg(t) and rg(t) (s = 1, 2, ..., p) characterizing the
oscillations of the free surface of the liquid in the FC tanks,
are in%ccessible to direct measurement and if the control action
6(3)(xl3), cevs X g)) cannot be constructed on the feedback

principle, the submatriz K3) must be of the zero order, and the
matrix XK will be of the form:

K=[KYiK?:i0]. (35)

Varlant 3. Let us assume that by using (k + 1) rate trans-
ducers and one linear displacement transducer, we obtain segregated
data on the rate of lateral displacement (sideslip] z(t) and the
angular rate ¢(t) of the object as a solid, and also data on the
generalized rates q4(t) (1 = 1, 2, ..., k) characterizing the
elastic oscillations of the FC body [15, 16]. Moreover, by
integrating the signal from the linear rate transducer we determine
the instantaneous values of the lateral displacement z(t, gl) at
the point of transducer placement &1, and also by using the rate
transducer we directly measure the values of the yaw angle w(t, Eo)
atuthe point £,. By using this data on the state of the control
object, let us formulate the control action in the form:

8=rz(5)+ k;é(f) -+ kg (2, Eo) - kﬁl}; ) -+ }E ké.ég {#). !- (36)
. = ‘

The summed signals z(t, &3) and ¢(t, £5) can be represented as:

b E) =2 — G — b O+ 3 g, O 6,

I=]

Pl E) = PO — ¥ 0,0V Ga)

i=l

1

where £, 1s the coordinate of the metacenter of the object [12]; /56
£3(£) and £f(£) are the intrinsic forms and the derivatives

thereof of the elastic oscillations of the FC pody.
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In this %gse, the matrix XK .(34) has the form (35}, and the
submatrices K(L) and K(2) are defined by the expressions:

. KY = ik, by kg — (3 — Bk, &), (37)
KE = ey @) — kol Ga) K, -« ofu () — kol &) B, 1 (38)

Varlant 4. If we use the summed signals 2(h 8 2 (6 B (6T

and §(t, £,) to form the control actions, the control law is of
the form:

6= kz(t, &)+ k2t &) + kb (6 )+ AV B (39)

which can also be represented in the form (33) with the matrix
K by the assigned formula (35), and the submatrices K(1) and k(2)
in this case will be defined by the expressions:

NP (4o)

KO =k ki by — &G — ki by— G — ) B\

K® = lafy (82) — bufs @) By B —Afi () - afu B —

— B @) K @) — ik G | (41)

Analysis of the stability of the closed multidimensional
control system in several cases can be made by the method of the
Lyapunov vector function [17-19]. However, this method, based
on overstated estimates of the Lyapunov functions V(1) (x(1))
constructed for each of the subsystems, leads to intensified
sufficient conditions forithe stability of the closed multidimen-
sional system and in practical use cannot yiedd the desired results.
In practice, when synthesizing a stabilization system we must have
certain confldence of the stabllity or instabllity of the cdosed
control system, which can be achieved by using a reliable (within
the frame of necessary and sufficient conditions) stability
criterion. A key feature of this criterion must be its simplicity
from the standpoint of feasibility 1n a digital computer.

One such criterion, in our view, is the Zubov criterion [20],
which 1s based on setting up the matrix:

\ \ I~ —1
R=F+42(A+bK—E) (42)

and raising it to the power ¢ = 2Y¥ (v = 0, 1, 2, ...,). According
to the Zubov criterion, the unperturbed motion of the closed system
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under analysis wlll be asymptotically Lyapunov-stable if and only
if in the raising of the matrix R fo the power o the elements of

the matrix RO.&= A0 I%72 4311 tend to zero as ¢ » ». This will
cccur each tlme when the lnequalities

2 (kb po 2 (k+p+0) 0 ‘
N <2k p4, 9= N et (43)

i=l I j==1

will be satisfied for a sufficiently large ¢. But 1f the selected
controller parameters do not belong to the domain of system
stability in the space of admissible values, the sums in relatlions
(43) will rise sharply with increase in g.

The above-described approach was used in the practical solu-
tion of the problem of stabllizing the unperturbed motion of an
elastic obJect with liquid contents, whose perturbed motion is
described by a .30th-order system of differential equations. For
all the above-indicated varlants..of specifying information used
in forming control actlons, values of the controller parameter /57
were found for which the closed multidimensioconal control system
exhibits the property of asymptotic Lyapunov stahility.
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ANALYSIS QF NATURAL QOSCILLATIONS OF A SPACECRAFT

N.F. Gerasyuta, Yu.D. Sheptun, and S.V. Yaroshevich

Let us consider the oscillations of a spacecraft with a
relay jet orientation system traveling in the atmosphere at the
altltude h = 100 - 120 km and acted on by a constant perturbing
moment; let us Investigate the dependence of the form of the
spacecraft oscillatory motions on the agtuator efficiency.

The equations of spacecraft osclllatory motion are of
the form:

B+ agod = agex + M. (1)
—§, for j=A, [j>mA and—<0

o for |jj<ma; A>|1]>maand >0,

!

) di )
l—f-@z for j<—4; j<—mA and >0
{

[=Th+ 0, &0

8 and § are coordinates characterizing the attitude of the /58
spacecraft in motion about its center of mass and the state of

the stabllizatlon system actuators, respectively; A 1s the zone

of insensitlvity of the stabilization system relays: m is the
characteristic of relay ambiguity; Tg is the time constant of

the differentlating loop; M is the reduced perturbing moment;

agg and agg are coefficlents characterizing aerodynamic and con-
trol moments, respectively. Let us reduce these equations to

the dimensionless form [1]. We introduce the new variables

T and ¢: . .

t=Tl'/;i“;—' 0 = Aqg. r

we obtain:
P=2rp+ L, j
—8&for jx1, j>m andﬂ~<a |
: i
_ 0 for .ljl<m and >0 ; (2)
%x(P, @) =
/ I >{j|>m '
+8for j<—1, j<—m.a;ﬂ§i—>0. ‘
.Here:

. o -
=Tt he=—-2"8 T—_T /Pﬁ"5 L=M
I=rewe g d ] 4’ dos
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The equation of the phase trajectory of a spacecraft In
dimensionless quantitlies is written as follows:

o — = 2(x— L)ig —q) + A (5" — g5 (3)
i — L . . . .
Changing the variables * ¥~ and W“¢\ , let us

simplify the phase trajectory equation:
WP = 2 0 — )+ A (42— D).

The form of the possible phase trajectories in the plane (¥, ¢)
1s shown in Fig. 1. The sections 1 to i1 + 1, i + 2 to 1 + 3

(1 = 0, 1, 2, ...) correspond toc motion with actuators engaged
(x # 0), the sections 1 + 1 to 1L + 2,cand 1 + 3 to 1 + 4
correspond to passive motion (k = 0) acted on by aerodynamic
and perturbling moments. The change in the angular rate y

of the spacecraft when diametrally opposlte Jet nozzles of the
orientation system are switched on, which occurs when the

imaging point leaves the zone ‘|T#4~¢L<:l , are characterized
by the quantities o, w,: 0, =gy —¢ and o, = s — Yite

The lines of the switching on and off of the controd
nozzles in the plane ¥, ¥ are inclined straight lines, whose
equations are as follows:

L

TH+p=1+
' L — forward actuation, .
Ty+9p=—1+L ;
T+ —mt = ' |
PEMTE 0 forward disengagement
i

T¢-Fﬂi==~—m-r 7% l (qot shown in Fig. 1){
}

Let us select' as segments without contact [2] the segmentSA

of the straight lines of inclusion:

Tl%&+l[7:1+";‘;’”: _[-{—%éﬂix{l{-;—:, (q)
To+y=—l+F, —l+F<v<it oo, ()

Let us set up the point transformations of the segments (4)
and (5) into themselves. Two kindg of slmple phase trajectories
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are posslble, determining these transformations: trajectories
intersecting the ordinate axis —- double-impulse cycles (shown
wlith a solld line in Fig. 1), and trajectories not intersecting
the ordinate axis -- single-impulse cycles (shown with a dashed
line). The lines FF' and KXK', whose equations are ¢ = /X, are
the asymptotes of the slngle-impulse cycle of maximum duration.
These lines indicate on the phase plane the largest change in
the angular rate

o — 2 (A4 Iy
T TVAYY
2 (h—L)

for which a single-impulse cycle is still provided. If w,> a,
s then double-impulse cycles are possible.
Point transformations are

determined by the following recur-
sion functions:

for the segment (4) into itself,
1f wy < w3y, then: 3

\
o ‘

e =2~} Atfo— 2 (6)

K ' K ;

If m1> Wir, {nn > Wy, then:

ST T AT T ;
N ‘ s@p:%;_ fﬁ+bw—%}ffbr¢<ﬁ},
Fig. 1. Possible phase M= o /o (1 By p_bp_ m—h
trajectories. V(v K E (vf kp K | K (7)
for P> 4=
for the segment (5) into itself, if W, < Wpp, then:
B =—Z+V Crp—2T (8)
If mz>'mw,®;>>w“,then:1
d 4, 3y b — Do
()'—“ _ s, f m-_—j"‘z_ “1"5\1‘2!
P y () =— R - ]/B+LVC+(1-]J —K—') 4 ) :
for lj}<-—— f(L f
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Here L

a1:1—|—%; C£2=1—T; K=l_'?vT21

Ki=1+TVX Ky=1=TVhk A=a,—oT, A,=a,—o,T,
1 9 : ]
A:W(GI“A?)(I—K}- BZT‘T“ —K)(Gt%——-ﬁlz), i

C— Tl (1 — K) (a2 — A2).

The form of the recursion functions (the Koenigs-Lamereaux
plét) is shown in Fig. 2.

If the perturbing moment actling on the flight craft is
equal to zero (L = 0}, Egs..(3) - (9) are simplified.

It is of interest to analyze the effect of the difference in
control impulses on the nature of oscillations. The problem is
solved by analyzing the oscillations as w» is varied from the
largest possible value to zero. The quantity.wj is assumed to
be constant, satisfying the condition w1 > Wipe

! The phase tralectory of

. a spacecraft is a pilecewise-

4 continuous function, con-
sisting of elements of
hyperbola branches. The
conjugate points of the
elements of the hyperbolas
. lie on the engagement-

(Z disengagment lines (Fig. 3).
The hyperbolas issuing at
the points whose coordi-

" . nates satisfy the conditions

! Yor <P, py > P, are sym-

metric relative to the
Flg. 2. Koenlgs~Lamereaux plot. ordinate axis. The endpoints
have the coordinates yy <y,

and IIJ,U = 1133.

The sections of the trajectories lssulng at the points
o <ww <y Wy < :113!1.1’ < b Py < P < WPy and ¥ <t < P, ; are

elements of the branches of hyperbolas symmetric relative to the
absclssa axls. The trajectorles terminate at the points of the

dégnierits of the tnelusion lines NN, MM, Py < by < BNA G, o Yoy < 2. |

. The trajectories issuing at the points with coordinates

Py <P <ty or s = Par = W 1lle only in the upper or lower
half-planes,respectively. L '
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¢ . - . The possible motions
of a spacecraft are whodaly
defined by the phase ftra-
jectories consisting of
the above-indicated
hyperbola sections.

Let us indicate the
abgclasae of the chara-
teristic points 1 to 10
: (see Fig. 3) of the phase

Fig. 3. Characteristic elements plane ¥,
and points of phase trajectorles.

A A !
%=?ﬁ %=m,%=f; %:?T %2‘??1

&
a
~
ol
'—l

Let us limit ourselves to studying the cscillations charac-~
terized by the transformations of the form

With decrease Iin w2, the form of part of the phase traJectory
lying to the right of the straight line ¢ = A7/K, changes, and
the number of steps of the sliding regime between the points a
and b becomes smaller {(cf. Fig. 1). A conversion occurs from

the transformation ¢ = Ti7T,T.. to the transformation
Ny = FT T, Mg = TiTy T, ..., T, = T,T. with the recursion functions
E%Dt&qmﬁNML Fioy = eis {0 1§ (PNF7 2 () = ey (0 [e ()] and: £ = e (p)].

A further decrease in the parameter wp causes the successive
appearance of the transformations [ = TiT., [V = TiT,, ..., I} = 7477, | 7|

and then oscillations characterized by complex transformations
of the form pb—= 77T, are produced.

The transformation multiplicity n 1s reduced; when Wn < Wops
the simple transformatian Tﬁ appears.
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TABLE 1.

Equality Cor-

responding to

Bifurcation 2
Instant

(F)|I-%

B, Disappearance of L ? 3.78
the fixed point of g{nh ﬂ”}iér
the preceding trans- :
formation

Designation
of Bifurca-
tion Instant

Nature of Bifur-
cation Instant

A, Inception of the 3.82
B{T][

transformation IIp

/ , Inception of the eil][‘
fixed point of trans-
formatlon Tp

\177}=A] 7 3.17

E2 Change 1n the form of n#(i&}ﬁéle 2.72
the hyperbola of
transformation T

5 Appearance of the NEa)=4a, 2.59
hyperbola of transfor- _
mation Tg in the
domain y < 0

G, Inception of the n

dl
transformation L
1'13 = T'r]ﬂTg .

=1

}}=%i: 2.34

H2 Disappearance of the HF( 2.3
fixed point of trans- \

formaticon H2

___
l
= f:-

Let us examine the sequence of conversion from some forms of
oscillations to others, with the example of the motions characterized
by the transformation Ill,. Following the work (2], we note the
principal bifurcation instants of the transformation I, = TnTe'

The nature of the bifurcatlion Instants, the equaticons of the
recursion functions (in symbolic form) and the system parameters
are given in Table 1 (ml = 1.5).

The generallzed form of notatlon for the equalities correspond-
ing to the bifurcation moments is -

nle(r)) = R. (10)
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In equality (1) r and R take on the values Al/K and E(AI/K) for /62
the equation of moment A,; the valuesﬁal/m'and e(ﬂl/K%) for the

equation of moment B,, and so on. Here e(V) is the transformation
that 1s the inverse Gf e(y) [2]. To obtaln the generalized
equation of the bifurcation curves wy = wy(A), let us rewrite
equality (10) in the expanded form:

B T wi = N

Solving (11) for wp, we get

(°2="%‘(32—D'.'I: V(DE—"—D)_ ‘

® = ]/[z(r)——?{‘—

-+

where

]

]2:t3___K__; D'—‘—(&l—-RfOQ—[]{-{-!
!
\

l—néja?-Kmi

Here K = K(A).

The Koenligs-Lamereaux plot corresponding to the moment of
inception of transformation I, 1s 1llustrated in Fig. 2. Analysis
of the plot establishes the range of the determination of function
Fp. One limit of the range is the value Y, = A1/Kp5. To find the
second 1imit, let us write the equality that is satisfied at the
moment of inception of the transformation:

SN o A
f’{"HK H}‘ X;
and let us denote the value of function Fg at the moment of

inception by:

V, = a

. n[e(—-kl_”_
Then &(V,1 =_&1/K or V, #_E(ﬁl/Kzl. In Flg. 2, the dashed line
123 Indlcates the transformation €(A;/K,) and the left boundary
v é_Vz_of the range of determination of function Fy 1s noted.
The funetion F, is defined for the values Y € (Va, y).
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Let us indicate the bounds to the determination of transfor-

@atiQn I, = TiT. . The recursion function of the transformation
is: ‘
Fy=mn{nle@)).

The left bound of the range of the determination of I3 is the
coordinate of the point of intersectlon of the abscisda axis
and the dashed line abcde (see Fig. 2):

who=2[n(F)]-
The left bound is  inf (¥o 4) , where B =25y

A further decrease 1n the parameter wy, causes the successive
appearance of the transformations Ny, N, Mg, ..., I,. The nature
of the onset of the bifurcation moments of transformations IIp is
similar to the nature of the onset of the corresponding moments

in &he transformation I,. The ranges in which the transformations
exist are determined by graphical methods used above for the trans-
formations INip and M;. Analysis of the Koenlgs-Lamereaux plot

(Fig. 4) shows that™as w, decreases, the function n{v, w5 ):.approaches
the bisector of the right angle and therefore the bifurcation

moments En and F, in the transformation @I, can be absent. The con-
ditions of the eXistence of the bifurcation instants E, and F, are, /63
respectively, the inequalities:

(R | <t ; (12)
|

(%)<, (13)

A
Both condltions must be determined when ws = w n Using inequalifties

(12) and (13), we can indicate the transformat%ons M and Ty such
that after these the bifurcation moments Eﬁ*l and Fﬁ+1 are absent.

I 11/,,‘1“,?5’” The value wp = w% for which
S Az b the condition:
y | : Sl
7 f E I /I’ ) . . A . A :
f??/// | (R ) =R (14)
. !

2.4 e ./’ i
“/ .‘ i
,',géfﬁmj .

2 S : . - . -

.?//, J{ * ! is satisfled is the bifurcation
25 L — | - value of the appearance of the
: AL . fixed point of the simple space
Fig. 4. Koenigs-Lamereaux plot . - Ln» From equality (14) we

for various w,. - fina:
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¥ 1 1 o '
I _ - k4
\ 0)2_- T [az(]-__?;) l/-—i..._._.}>m1’ .

l
I S v
5 T ] e where
L @, = AT+ K~ @y — Ko,
|
Fig. 5. Double-lmpulse cycles at The phase traJectory cor-
the moments of the inception, dis- responding to wl is of the

2
form of a closed double-
impulse cycle displaced along
the ordinate axis toward the
positive values. With decrease
in w,, the trajectory is displaced toward the side of negative ¢
values (Fig. 5); when the equality

appearance, and transformatlon Tns
and also the symmetric double-
dmpulse cyele.

corresponds;, where g _ _ %'A;Ff34;t§Lj_ A Y_:

the fixed point of transformation Tn dlsappears.

The coordinate of the fixed point of the transformation is /64

defined by the equality

2 .
o = 285057 4 @Ry — V (2002T - 0,R,F — S (0 —oF)

Tk (wf —al) . v

where

Ri=KHB+C)+ A —al+ il S = 4T3 (KB + A) — RS, |

Here and above roots satisfylng the physical meanlng of the
problem |

1ﬁ€(l—?VT’ l+?Vf).!

were indicated. If wj = w, and L = 0, then ¢j=1—-3T
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(the phase trajectory is symmetric relative to the coordinate
axes). We note that when the perturbing moment is present (L =
= const = 0), it is Impossible to establish the double~Impulse
closed cyele when W) = s

When wn < mgr, the nonsymmetric closed double-impulse cyele
converts in%o an m—lmpulse closed cycle, consisting of m ~ 1
double-impulse and one single~impulse closed cycles. The single-
Impulse cycle begins and terminates at the line MM (cf. Fig. 3).

We will analyze possible motions by using the_recursion function
(9). The Koenigs-lLamereaux plots for Wy < wZI are shown in Fig. 6.

With decrease 1in wo, the abscissa of the bound to the discontinuity
of the recursion function of the point transformation increases
modulus-wise and 'the curves 8(¢} and y(y) are shifted parallel to
the absclssa axis. Here there is a successive conversion from

the m-impulse cycle to the cyclesm - 1, m - 2, ..., m - £ = 1,

We illustrate the inception and disappearance of these cycles

with the example of a three-impulse c¢ycle, which corresponds to

the point transformation P5 = TgTy, with the recursion function
f2(y) = v|B(¢)|. The bifurcation instants, which can occur in

the transformation Po, are shown in Table 2.

A feature of P, type trans-

-¥ E T w formations 1s the possibility
-ﬁf~ﬁﬂ%aﬁ—h¢@ﬂ | ; a that for the same wp values
T . fixed peolnts of two nelghboring
LT = | i transformations P, and P
=G0 * ] Tl . n-1i
; 1// s ///ﬁ exist. Figure 6 shows the
| 2/4 1 ///4. plots corresponding to the
47 b (PP limiting transformation cycles
I Ly plotted for the same wp. The
.//ﬂiifﬁ;;;// . form of the limiting cycle
—&ﬂ S i e depends on the initial coordi-
|/ e | D nates of motion. The set of

possible motions observed with
change in w, depends on the
selected wy. Thus, the trans-
formation Py = TgTy, with
decrease in ws, can convert
either to the transformation

phe 7 » Or to the simple

transformation Tr. The condi-
tion of the existence of transg-

i g A pr g -
WoE W e e

Fig. 6. Examples of the Koenigs-
Lamereaux plots for the trans-
formation Ppn (> e

formation Pg is that the inequality:
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be satlisfied. Here

Ay .
?k"ﬂ?ﬂ“”‘ﬂ—bT%U_m%H — KL Ay = Ay (oy).

The disappearance of the transformation PS accurs when

O

After this eguality has been satisfied, the existence of only the /65
simple transformation Tg 1s possible.

The possibility that the bifurcation instants Cg and Eg exist

1s also determined by the value of parameter wy. The conditions
for the existence of these instants are, respectively, the inequalil-

INTL ; ALY A
ties VQ‘ Kg)z""“ and ?(h_ﬂ£1)>hu S 1 where 4 _

_ f(ng Kl ? l - (ﬁ - m?rT). .

The principal phases of change in the point transformations
are iliustrated by Fig. 7, where the bifurcation curves in the
coordinates wp andiX are represented. All curves are plotted for
the values wy = 1.5 and L = 0. The first (L) group of curves
corresponds to the transformation o, the second (II) -~ to the
transformation Ty, and the third (III) —— to the transformation
Po. The notatlons of the curves coincide with the notations of
the bifurcation instants. The functions Cp, Hp, and C§ correspond
to the bifurcation instants of the inception (C C ) and dis-

appearance (H,) of the simple transformations T an The line
Qni(wp = const) characterizes the function wp = w (A) or the
case of the symmetric cycle (wp = wy). Analysis of the bifurcation

curves allows us to conclude the following:

-~ with increase in the effect of the atmosphere (with
e decrease in the flight altitude), the multiplicity of the
complex point transformations (the number of impulses in
the closed cycles) becomes smaller. This follows from the
drawing together of the bifurcation curves of groups I, IT,
and III, with Increase in A;

-- the value of A affects the sequence of the onset of bifur-
cation instants, which is illustrated by the nature of
the curves C§ and GX¥. If A < Ay, then the fixed point of
transformation T aBpears for ws values that are smaller
than theose for which the fixed point of transformation P,
disappears. If A » A;, the moment of the disappearance of
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the fixed polnt P, sets in for smaller w, values and

the instant of the inception of the simple transformation
Tg. In the domain 0 < A < A1, the transformations -PrBl

are possible; and

-— if wy = wp (Aw = 0), then regardless of the value of A /66
(regardless of the flight altitude), only the double-
impulse symmetric cycle 1s established.

TABLE 2.
Notatlon\of the Nature of the Bifurcation Equality Cor-
Bifurcation Tnstant di £
Instants fstan responcing Lo
the Bifurcation
_______ S . S Instant
A% Instant of the inception of the WL
fixed point of transformation P, VR K
B§ Instant of the disappearance of v%[?L_é%]lﬂ E
the fixed point of transforma- VL iﬁf |
tion PY =—%
A |
c} Instant of the change in the form TIB (= g =
of the hyperbola in the transfor- T T4
mation TB :
1 n
Eg Appearance of the hyperbola of ?(—R—}=—% |
transformation Tg in the domain ! !
Py £ 0
F3 Instant of the inception of the ﬁh(_ld]=..@ -
fixed point of transformation RS yt
G4 Instant of the disappearance of 5%(_éﬂ}=__g
the fixed point of transfor- Ky/ Ca
mation P2 '

Let us examlne the stablility of the craft osclllations (the
stabillty of the flxed points of transformations T, and P, .
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We can find the flxed polnt of tranaformations Iy and Pp by
solving the equations:

F.(p)—p=0,
falp)—$=0. (15)

As an example, in Fig. 8 are presented the curves of the
recursion functions Fp corresponding to the transformation II; and
constructed for different w,, with constant wj. The abscissae
of the points of intersection of the curves with the bisector of
the right angle are the soluticons of the first of the equations
{(15). The 1nitial data used in constructing these recursion
functions are as follows: wy = 1.5, T = 0.4, X = 4.2-10~2, and
L = 2.1.10"2.

The stability cof the flxed
points, according to the Koenigs .
theorem, is deflned by the
value of the derivative recursion
function at the fixed point

AN dF,
tp = C). If de

the fixed point is stable, and

e =1

when ]*——$=C:>11

it 1= unstable. [1, 2].

Let us examine the case when
the perturbing moment is equal
to zero (L = 0). The simple
fixed points of trangfevrmation
are deflned from the equation
e%w) - ¢ = 0, or, which amounts
to the same thing:

! /_ 12 &" 2
ll-t?f ; . l\ . ‘R__l A‘f‘("-b‘—-[?!—) —v=9
e e e ara A= 0 —A)1—K), & =1—0oT

Fig. 7. PBifurcation curves.
The equation has the single
1
raot  ¥'= —itéL , and therefore

the transformatlon Te corresponding to the SLngle-impulse oscilla-
tions of the spacecraft, when w3 -Ainmel, wp} < wp, has the single /6
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T simple fixed point .
A e (e 1)
29 The derivative recursion
4 function e(y) is of the form:
| _A
' de ¥ K . l‘
r v .7 &pe
: | Bef—g)
] ‘ f
YL SN N
A L Y T T its value at the fixed point is:
- . x
Fig. 8. Recursion functions e ‘tdl_"%; w
' |

of the point transformation roy

) | | p=1 L/ri-+(1'+d‘-— al)" \
O, =7.T, u < E&J 2 K \
T =Talefor < g ) @, > Oz ‘ ‘ ‘

Since & ¥ 0, for any values El we have:

o | (16)
| ooy <1+
Therefore, the flxed polnt of transformation T, is always
stable, regardless of the values of the system parameters. The
fixed points of transformation'T, are always stable; for any
0, —L ) i
A > 0 and wé( I—FTVT) , the equation

dn ‘ 1
‘?$_¢=C<:1'L (17)

is satisfied.

Since the inequalities (16) and (17) are valid, the fizxed
points of the complex transformations Iy and P, are stable, which

anf df
e and n, .

follows from an analysis of the expressions for e
!

For example, the derivative ‘ J

-

LR de) ﬁ dnt; ()]
dp ~ dy dg

=1
for all ¢ values does not exceed unity modulus-wise, since

Ids

Foy <1, '—g;g—ﬂl<1* and Fu () = M1 [e ()]
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If the perturbing moment is not equal to zero (L # 0), the
derivatives of the simple recursion functions are of the form:

P 2y o e o N
Vel b3 T2V

The fixed polints of transformation T. are stable for any values
of ¥, if the conditlon A > 0 is satisfied, or which amounts to the

same thing, 2 - mﬁ{:>*h%ﬁ . The latter is always satisfied, and
therefore, the single-impulse cyele is stable.

The fixed polnts of transformation T, are.stable for any /68
values of ¢, if C > 0 and B > 0, or which amounts to the same
thing:

2 —;T) (2L + @,TA) >0, | (18)
2L (2 —0,T) <2y T (2 — 7). (19)

'

Inequality (18) is wholly satisfied, and for inequality (19)
to be satisfied, we must have w; = 2L/AT.

In the case w; > 2L/AT, the transformation Tn, has a single
stable fixed polnt. If wy < 2L/AT, transformation Tn has two
fixed points (see Fig. 8), one of which is always unstable.

The proof of the stability of the second fixed point is
analogous to the proof of the stability of the fixed point of
the simple transformation corresponding to the double-impulse
cycle, for the motion ofithe craft outside the atmosphere when
acted on by a constant perturbing moment [5].

The fixed peints of complex transformations Iy and P, cor-
responding tc complex periodic motions in the atmosphere when
acted on by a constant moment are stable. The proof of the
stability In the case wy > 2L/AT is analogous to the proof of
the stablllty of the filxed points of the complex transformations
for motion In the atmosphere in the absence of a perturbing
mement, and 1s also analogous to the proof of the stability of
the fixed polnts of complex transformations for motion outside
the atmosphere when acted on by a constant moment .
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Let. us compare the amount of energy expended in providing
oscillatlons In the atmosphere when Aw # 0, with the amount of
energy required to produce the symmetric ascillations (Aw = 0)
under the same conditions. By integrating the equation of
motion (2} and transforming it, we get a formula for determining
the period of the closed double-impulse cycle {(ef. Fig. 1):

T i In {1 — £ P o DU — Kogy)
& Ve (Ko | o | — 8o} (Kot — By}

Analysis of the dependence Ty = T,(Aw) (Fig. 9) shows that
%n the case of the decuble-~impulse cycle, the symmetric oscillations
Aw = 0, I, = 0)

_ 2 P— szt'
Tac = VA& In Ko — 8y °

have the shortest period.

For the complex n-impulse cycle consisting of mp single-impulse
and mp:ldouble-impulse cycles {(n = m] + mo), the period of oscilla-
tions can be determined from the formula:

— N 3 @
Ta—* ol i i'!

i

i=1

where \

L 1=Ky |
(‘]) = — i+2
T Vi In Ay — Koy !
O S {1+ Ko 0) (1 — Koy :
! ¥ A {8, — Kz‘PH-l) (A 4 Koy y) i
Here Til) and Téz) are the durations of the single-impulse and

double~impulse cycles, respectively.

If the energy consumption In a slngle nozzle engagement is
denoted by q; (J = 1, 2 == the nozzle number) and if we assume
q1 = Twy,s 92 = rwp, where r 1s the coefficient of proportionality,
the consumption of energy in the time t (t >> Tz} for complex

cycles of transformations of the form ﬂg and Pg will be @ =

= —;{T {(my + 1) », + My ,).

!
For the symmetric cycle 2~ 7. % . TIn order to compare /69

the energy expenditure, let us examine the ratio § = Q/Qg¢. Figure
10 shows the dependence of the relatlve energy expenditure on the
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parameter w,. It 1s assumed that L. = 0. A plot of the function
Q(up) can be considered as consisting of individual sections cor=
responding to perlodic motions of different types. Thus, for
this example, the section of the functions Q(0 < wy, < 0.83)
illustrates the energy consumption in the case of single-impulse
periodic motions. Double-impulse c¢ycles are established in the
range of values 1.34 < &y < 1.7. This range of values divides
the plot of Q(ws} into two parts. The set of parts lying to the
left of the point A(wy = 1.34, § = Q) corresponds to periodie
motions, whose phadse trajectories contain single-impulse cycles
lying in the left phase half-plane; the set of sections to the
right of the point B(wp = 1.7, @ = 0) correspond to the motions
whose phase trajectories have single~impulse cycles in the right
phase half-plane. Thus, the sections Q(0.8 < w, < 1.74), and
Q(2.3 < wp < 3.2) illustrate the energy consumption in establishing
the three-impulse cycles, and the sections Q(1.1 < w, < 1.26),
Q(2 < wp < 2.3) -- the five-impulse cycles, and so on.  The cycle
multiplicity increases with increase in wp (wp; + 1.7) and with
decrease in wp (wp + 1.34). ,Theisections. of the functions Q

for the values 1.26 < wp < 1.34, and 1.7 < wp < 1.8 are not

shown in Fig. 10. - - -

The function of the

fLF’ ' relative expenditure Q(w,) has

extremal values. The minimum
values equal to zero occur at
the initial and endpoints
isolated above individual sec-
tiong; the maximum wvalues occur
within the sections. At the
initial and endpoints of the

; sections, the first derivative
\\\\\M/// dQ¥*/dwy is discontinuous. The
: value of the function @ - 0
2 . corresponds to the closed phase
~07  -41 7 o trajectories, which include a
.- hyperbola passing near the
Fig. 9. Plet of the dependence origin of coordinates (T, + =).
of the duration of the double-
impulse cycle on Aw. By analyzing the dependence

of the relatlve expenditure on
the values of wp when w; = const, we note the following: the
eriergy consumption depends essentially on Aw; the smallest energy
consumption to ensure the oscillatory motion is needed when
establishing single-~impulse cycles; it l1s difflicult to realize
pericodlc motion with energy expenditure close to zero, since at
the points of the minimum of functlon Q the derivative (dQ/dwo) + =; /70
the energy consumption when Aw = 5 < 10% 1s much smaller than in
the case &w = 0.
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i

— In conclusion, we can state

: ' S the followlng. The form of the
’ ; . oscillatory motions of a space-

2

craft and the amount of energy

Lé

L2

E
— expended in orientation dependi:is
? essentially on the difference of

ad

fj i N the impulses of the control moments
AN | and on the atmospheric density.
/] i\ﬂ Simple single-impulse and double-

impulse oscillations are possible

2 :
o —71?4ﬂ Vh’]”lfﬂ, " if the control impulses are

Fig. 10.
relative energy expendlture.

dif'fere
the osc

MoALE 28 25 50 ey identical and the perturbing
moment iIs absent. For uneven
impulses and when a perturbing
moment is active, complex multi-
impulse natural osclillations of
nt types are p0531b1e, with increase in atmospheric density,
11lation multlpliclity becomes smaller and the sequence of

Functions of the

bifurcation instants changes. Not all periodic motions of the
craft are stable, but in any multi-impulse:motion there is a

stable
of the
in the
can be
in the

cycle. The smallest amount of energy to ensure orientation
craft 1s expended when establishing single-impulse cycles;
realization of multi-impulse cycles,.the energy expenditure
minimized by the appropriate selection of the difference
Impulses ¢f the actuators.
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INTEGRATION QF EULER'S KINEMATIC EQUATIONGS

A.T. Tkachenko

To stabilize the attltude of a spacecraft (SC), in several
cases one must know the instantaneous values of the Euler angles.
characterizing the orientation of the SC in space. One method
for the autonomous determination of these angles is the Integration
of Euler's kinematic equations in an onboard digltal computer using
data arriving from rate transducers mounted on the spacecraft.

Here we must select for the computations a sufficlently simple and
exact algorithm that does not impose overly rigorous requlirements
ocn the characteristics of the computer.

Let us determine the orlentation of the right-handed orthogonal
trihedron xyz asscciated with the SC relative to the same nonrotating
trihedron £nZ by means of "aircraft" angles: yaw ¢, pitch €, and
roll y. Let us introduce the notation:

Yy=sint®, V,=rcosd=£0,
C Zy==siny, £, = cosy.

X, =siny, X, = cos, ;
I (1)
J

The kinematic equations that the variables ¢, 8, and vy satisfy
can be written as:

32-[—&3_,,'21, ; (2)
. 1 ‘
Y= (wz""mzz)yz -+ ..
. oy
Here wyg, » and w, are the projectlons of the angular rate /71
of the SC onto %he X, y, and z axes. To determine the orientation

of the 8C relative to the trihedron EnZ, we must integrate Egs. (2)
Jjointly with the system of equations:

X=X Xy=—9X,

Y.]. = 6},2, Y _— {}Yl,
21 = 'y'Za, Z ?Zl'

(32
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. We can use the quantities X1y ansy Zo to compute the direction
cosines characterlzing the relatlve orlentation of the trihedra xyz
and &nzg.

We will assume that the data on the SC angular rate arrives
at the computer in the form of the increments 6y 6., and 8, of
the integrals of wy, wys and w, in the time (step) of constant

duration h: ’
o ety In+1
ge] == f w_ df, 9y,n+l= j wydf, :
’ !
- (4)

Ocps = 5 Oty  fpyy = ¢, - h.
‘n

By introducing the notation

PIJ CN 5
g = Lﬁ' N ar = m’y + e == BU '
)
w, 2
mX T ~— 0 0 0 0 07
' Xy — 0 0 0 0 0
oy 0 0 0 & o 0
X = ! (D = ! '
Ty, | = O 0 —9 0 0 0
zZ, o0 00 0y (5)
Z, Y 00 —y 0 _
T - z, z, ~
0 Y. - 1/1.1
F(X)=| 0 Zy Z, ,
i . ¥, Za ViZ,
Ve Y, _

we can represent the systems of equations (2) and (3) in the form
9 =Fo, (6)
X =dx. (72
To derive the formulas of the numerical integration of Egs. (6)
and (7), using the information (4) let us make the assumption that

the functlons w s Uy, and w, are analytic ln the neighborhood of
the points t‘algn, which can be written as:
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0O =0+ 0, — )+ g0 (=Ll (8)

Then we can introduce the expansions

B ) = O, + Dt — 1)+ 5 Pul— 1S+ - )
- | 4

FIXOl=FX)+FX)(t—t)+ ... (99
X(WO) =Xy + Xyt — 1)+ = X 0=t + ...
O = Pa+ Pt — 1)+ ...

By integrating equalities (8) and (9) in the limits from t, to
t 1 and with reference to formulas (6) and (7), we get the power:s

series:
Buss = 0,k -+ — OB + - 0h | (10)
ADpp1 = Qpyy — D, = D D2+ ... (11)
Atan.'l:(pﬂ“f*l"‘(pn=F(Xn)mnh'"‘__%"[ﬁ(xn)mn“"F(Xn){;)nlhz+ (12)
Kns = [E 4 Oph 4+ - (B, + DD 2 4
o @, 300, + DY+ X, ' (13)

The unit matrix E with dimensigns & x 6 was introduced into
formula (13) and the equality %% = %% was taken into account.

The simplest first-order algorithm for integrating Eqgs. (6)
and (7) has the following form:

Ansr = F (X)Oupr, | (14)
Xﬂ-H = (E + A®u+1)xrx' J‘ (15)

in matrical notation.

The increments of The Euler angles in the step are found
from the formulas:

H

Aﬁn—i—l = eZ,rl--]—lZ2r1 + ey,n—}-lzim ' \

1
Appy = Vo

8y n41Zon — Oz nriZin)s (16)

1
A?n-l-l = G.x.n+1 — Yo (gy,n+lz2n - 92.n+121n)Y1n-

v

109



The instantanecus values of the angles ¢, 6§, and y are
determined by summing the Increments of these angles. The com-
ponents of the vector X are computed by the formulas:

]

Kinpt = Xin + AfPnpiXon,
XQ,n+1 = X?n — A'\pﬂ—}-lxlm
.............. | (17)

Z?.n—]—l == Z?n — A?n—-i-!.zln.

Substituting expressions (10) and (11) into formulas (14) and
(15), and comparing the results with formulas (12) and (13), we find
the estimates of the errors of the algorithm (I14) - (15) in the step:

) 5 »
G(Pn+1 = 5 heF (Aﬂ) ®g,

: , (18)
6X,1_+1 = —‘-“12"— hz(DﬁXn l

If the quantities wyg, wy, and wg are large enough, to obtain
satisfactory precision we must perform computations using formulas
(16) and (17) with a very small step, which leads to a heavy load
on the computer. Therefore it is preferable to use more exact
algorithms capable of increasing the integration step and of
reducing the volume of computations without detriment to precision.

Using the expansion /73

—

F(Xao)=FX)—F(X)h+ - FXIRE ., (19)

we obtain a formula of second-order precision for integrating
Ea. (6):

A@ni1 = 5~ [BF (Xo) — F (Xuoi)] Ouss. (20)
The corresponding expréssions for the increments of Euler
angles differ from the formulas (16) in that instead of Xy Xen,

[ 1
o ny Zan, the quantities =5 (BXu — Xia—a) -+ - 5 (3290 — Z?,n—l)‘ apppear

in them. The error formula (20) 4n the step is a quantity of
thiprd-order smallness relative to each;

80nsi = — o= B F (X,) 6, + 5F (Xjo,). (21)
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For the first step ("fitting" of algorithm (20)), when the
values Xl n1® **°» Zp .7 are not known, we can use formula (14).
s sz

The error introduced here is a second-order quantity in h, that is,
it is comparable wlth the accumulated error of algorithm (20).

Computations based on formula (20) must be combined with the
algorithm for integrating Egs. (7) more exactly than for formula
(15), for example, with the second-order algorithm:

Xingr = (E—f— ADqy + —2]—A(D,2,+j) X. (22)
In scalar notation,

X;‘n.;..] = (1 _ -é— Al[,?ﬁ+]) Xln + A‘prz—f!X%t ‘

........ SN, (23)
Zg,,.H = (1 — Avrzl-i—l) Zz,-; —_ A]J,,.L;Z "
The error of algorlithm (2) in the step is estimated by the
expression

The pair of functions X; and X, satisfles the system of
differential equations with the matrix of coefficlents, whose
principal-diagonal elements are identically equal to zeroc. TFor
these systems, the so-called reversible first-order method ydeilds
a precision of Integration that is comparable to the precision
of the second-order algorithms. Calculations were made using
the following formulas:

Xinpr = Xin + Aprg1Xan,

Xoptr = Xon—&pnpi Xint. | (25)
for some (for example, odd) step. In the next (even) step, the
expressions:

Xyptr = KXep — A‘l-’n-i—lxlm 1

X+t = X+ An 1 Xo . (26)

are realiged.
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In similar fashion, the functions ¥, ¥, and Z1, Z, were
computed. The sequence of the replacement of the initial values
of the variables by their .computed values in each subsystem is
opposite in the odd and even steps. This system of computation
1s much more economical than algorithm (22) and imposes less
stringent requirements on the computer. A second-order algorithm
similar to formula (20) can also be used in integrating Eq. (7):

Xn-l-! X + Amn-r[ (3X - Xr J (27)

with &'step error of - /7h

i = — (0,0 + DL X (28)

Let us examine one more method of computing Euler angles,
based on the "mean ordinate" method. Suppose we know the values
Xl,n+l/2’ ceuy ZE,n+lf2 of' the components of vector X in the

middle of the.next step -- at the instant t = t, + 1/2h. Let us
represent in the form of a power series the value of matrix F
at the lnstant tn+l/2:

F(Xopi) = F(X) - F(X)h+ = F(X) e - (29)

With reference to expressions (10), (12), and (29), Wwe can
easily see that in computing A¢ according to the formula

Agnit = F (Xooip)8apt (30)
in the step an error of third-order smallness in h i1s introduced:
6(Pn—3—1:_—'-i'IQ_‘hs[';_F(Xn)wn_l—F(Xn)mn]- ‘c (31)

The expressions for Awn+l’ Asn+l’ and AYn+l corresponding to
formula (30) differ from expression (16) in that instead of Xqps
«-ss Z,, the values Xl,n+1/2’ “eas 221n+1/2.figure in them.

Let us introduce the notation

Dr = = (AW, — AD,) = D+ D+ - Dyt - (32)
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Usling the expansions -

. Xn+112=[5+ -*;—(I'Jnh'l"‘é’((bn + DA+ “']X"' (33)
2 9 ((D (bﬂ)hz; ---}sz! l -
X,I+3,ng={E—§" E—ED,.,h’t""g" ‘ n+ 1 1 !
we obtaln a formula for computing the vector X In the middle of
the next step ‘
Xitam = . IR I
+3/2 (-E + Dn—r] + 9 n—f-l) Xfi+l!2 . (3’-‘)
with the step error
P e N !
6Xn-‘:—3,‘2 = — fla(—é— (D?; + -g—q)n) Xn. .‘l (35)

When the "mean ordinate" method is used, the values X1, ..., Z»
are obtained with a shift for half of the step forward with
respect to the input data (4). This factor must be taken into
account when performing navigation computations using a direction-
cosine matrix. Instead of algorithm (34), one can use the more
economical 'first-order reversible method, similar to the methed
(25) - (26). For "fitting" in the first step, one can assume

F(X:j__') = F(XD), Dl == 3{'2A(I)1. ‘
without detriment to the precision of the calculations overall.

It must be expected that in most cases of SC motion, the
"mean ordinate"™ method (30) enables us to determine the Euler
angles to a higher precision than does algorithm (20). The
accumulated error of the lntegration of Eq. (6) without allowing
for the effeect of the errcor of computing the vecton X to the
first approximation is equal to the sum of the errors in integras
tion iIn the step. At the limit, as h - Q, we have

t |
89 () = 4 [ S9nr O, | (36)

7

[

where 8¢ .,(t) 1s the "local" expresslon for the error at the step.

and by /75

By insexrting into (36) expression (21) for 6¢n+1

carrying out Integration by parts, let us filnd the estimate of
the accumulated error of algorithm (20):
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8p(t) = o 22| F (X oy — F (o) —, }1 (X) wd‘J; N (37)

By performing the same operations for the error (31), we get an
estimate of the accumulated error of algorithm (30):

F

&p(t)=—llz—hZ[F{Xo)mo—F(X)co—k;—SF(X)mdt}.! (38)

ta

If In computing the quantity 1/Yp, the operation of division
is undesirable, we can use recursion formulas of the type

! ! Yo | |
T = Vo (2. (39)

yg,n -+ y?rt o

In conclusion, we note that if the solution to Egs. (7) is not
used In setting up the matrix of direction cosines, then computation
of the quantities X; and Xp can be omltted. But if the unknown
angles ¢, 0, and v characterize the orientation of the SC relative
to some slow-varylng coordinate trihedron (for example, the
accompanying trihedron of the orbital system of coordinates), then
to the right sides of Egs. (2) are added small terms that must be
taken into account by periodic correction of the sclution.
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AN ALGORITHM FOR COMPUTING THE TRAJECTORY
OF THE INJECTION QF A. SPACE OBJECT INTO ORBIT

A.A. Krasovskiy and L.T. Gripp

The solution of problems .:assoclated with the motion of a
space object over the sectlon of its Injection into orbit 1s
impossible without complex and cumbersome computations and
requires.considerable outlays of labor even when a high-speed
computer is used. Statistical methods of analysis of the {ype
of Monte-Carlo method and the random search method are widely
used. These methods in several cases can markedly improve the
flight characteristics of space objects, however to find the
optimal solution requires increasing the speed of calculatlions
by one order of magnitude.

Stringent requirements on ensuring.high speed of calculations
are also imposed by problems of the encounter of space objects
in orbit, developing systems of flexible control of space object
‘motion, and many others. Therefore it is very typical of modern
methods of analyzing space object motion that a great deal of
attention is given to developing universal calculation algorithms
that require minimum outlays of labor and machine time.

Improvements in computational methods of calculating space
object motion are following two main trends: development of
analytic methods for the most general assumptlons possible, on
the basis of which a mathematical model of the flight 1s con-
structed, and the development of universal numerical methods
requiring the smallest possible cutlays of labor to arrlve at a
solution with specified precision.

The most successful secolution would be developlng an algorithm
which would approach in universazality numerical methods, and in
speed —-- analytic metheods. An attempt to scolve this problem is
given in the present article.

Let us examine 2an glgorithm for computing the trajectory of
a space objJect over the section of i1ts Injection into orbit for
assigned designed characteristics of the object and launch vehicle
and for selected control.programs.

The mathematical basis of the proposed algorithm is the
use of interpolational power polynomials for numerical integration
following the scheme of successive approximations.

As a numerical iIllustratlon of the results obtained in the
article, we used data on hypothetical launch vehicles and space
cbjects published in the periodical litérature.
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the scheme of successlve approximatlons. The analysls of procedures
of numerical Integration based on the Picard method of successive
approximations 1s closely associated with the names A.N. Krylov

[1] and V.E. Milne [2]. Below is presented a numerical method of
successive approximations based on the concepts of these authors

and on the Interpolational quadrature formula.

Let us first examine expressions Tor the coefficients of
the interpolational power polynomial.

We know [3] that for any assigned function ¢(t) there exists
a unlque polynomial of degree m

— T odt,
Qm (t) .!:":Omk | (l)

which at (m + 1) arbitrarily placed interpolation nodes ts; (j = Q,
1, ...} where t3 # tk for j # k) takes on the assligned values

Qn (t) = b (2)).
The traditional method of determining the coefficients of

the polynomial is solving the system of (m + 1) llnear algebraic
equations

o B i
2= (2)

k=0
where ¢35 = ¢(tj). Here and in the following it will be assumed
that the indexés k and j run through the values 0, 1, ..., m.
Using mathematical induction, we can show that the coefficients

of the interpolaticnal poglynomial can be obtalned directly from
the expression

mk:EOAjkqu’ }. (3)

where
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In the case that 1s convenient for practical purposes, when
the interpolation nodes are equidistant points, the coefficients
Ajk are found from the simpler expression:

A e

A;‘k:fﬂj,h+1"' oy Eﬂ—?l‘;r- : (4)
= |
where | 1
(=0 |
Aim = im =11 - |
Then the interpolational polynomial (1) takes on the form: /77
me == ’f‘ .-
() k“zi‘.](t}kT' | (5)
where

. #— ‘
s k=T

tif and t' are the bounds of the finite 1limit of change of the
independent variable.

Data on machine time outlays (Fig. 1) show that when m > 3,
the recursion expression (4) for determining the coefficients of
the interpolationalipolynomial reduce the time of computation
compared with the case when the system of algebraic equations (2)
is solved by ordinary methods, for example, the gaussian method.

The advantages of the proposed method of determining the
coefficients of the interpolational polynomial also include the
expllielt analytic representation of the coeffielents and the
reduction in the required slze of the operational memory of
the digital computer.

Let us use the interpolational polynomial of the form (5)
to construect a quadrature formula o find the integral with

variable upper limits |

!
x)=§poa,
tli
where ty < t g t'.

By replaclng the integrand with the interpolational polynomial
(5) and neglecting the residual term, let us construct the rule
for approximate quadrature:

m

x(t)zhE k‘:’f - TEEL (&)

k=0
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T, miccex & The resulting formula 1s
R e i . easally applied to¢ the computa-
i , tlon of multiple integrals.

T e Thus, an integral of the form

£t .
Xm=§§.”§¢mmw

can be computed according to

Wb L LT the following approximate
e formula:
e s i Bop iy \
; o X(f)-—"-‘:-‘h EWT . (7)
0 Lt i [N E=0 ‘
16° 167 m
Fig. 1. Machine time required When the resulting quadrature
for computing the coefficients formula 1s used 1n practical
of the interpolational polynomial computatlon of the requirements,
as a function of its order: the precislon of integration
i, —— pecursion formuls can be ensured by varying the
--~ gaussian method order of this formula m and
the length of the interval of
Key: a. usec change of the Independent

varlable At = &' - tH'

Let us proceed tco the problem of integrating ordinary differen-

tlal equatlons based on the interpolatiocnad:quadrature formula of
the form (7).

Under the Picard theorem [U4], for a first-order differential /78
equation

J.c=f(lt.x), x(£) =x, (8)

whose right sides satisfy the conditions of the theorem of existence
and uniqueness, there is a recursion formula for finding the solu-
tidon of this equation in the form of these successive approximations:

4
Xy =x, + Sf(t, Xy_y) dt.
tﬂ
Here, 1t 1s customary to take the inltlal condition xpy as the
Initial approximation xg.
Using formula (6) to find the quadratures xy, in the interval

[ty, t"], we can represent the approxlimate solution of differential
equation (8] as the power polynomial:
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{ (9)

k+1 ThH |
SN
whose coefflcients wyp, are determined by the recursion relations:

x*a+h2

k==

Wiw = ¥ Ajefiv,
=0
f.r'v = f(t}: Xivh ‘ (10}
mmnh Y L vmtz |
=0

The numbers X%v are values of the v-th approximation of the
unknown function at the interpolaticn nodes.

Computations based on formulas (10) Were made up to the value
v = r, for which the relation |xp - X, < ¢ 1s satisfied, where ¢
is some assigned small number character%zing the required caln
culation precision.

This method is generalized to a system of ordinary differential
equations of any order that is soclvable relative to the major

n

derivatives xf=fi(f, Xp ..y Xp Xp cevs Xy -oey 30, L, HD),
i=1, 2, ..., n

The approximate solution in this case is analogous to (8):

{
k\ Wipp !

X = Xy + B E pyie TRl ax | (11)

The iterative process (10) for the system of equations is
conveniently: represented in matrical form

] = {;cﬂ] —}-h}c [fv_,;}{Eﬁ], V= l, L (12)

where.LEW]==D%J[D§H,[£J,Ih_d‘are the rectangular matrices of the
ty X.. ‘ 1 .
type n X m, whose elements Xi9H and,fi,j,v_1 are defined as follows

T = 5+ (e
g = XAy X. D —_—
O v | A
f”'v_i = f’ (tf’ Xijv—1, ooy Xafve x;fw—]i ..
e —1 —
’ xﬂf\' I' « =y xl}\') ey x,(_;jvﬂl)
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CApl, ED(X)] are square matrices of order m; the elements of the
matrix [A ] are found from expression (4); and the elements of

the matrix [DCX)J are calculated by the formula D = 7%1;%._

Tteration (12)'1s continued until the required integration
precision is not attained, after which the coefficients wjy, are
determined:

[GJ,] = [fr] [Am]’ | (13)

The process of determining the coefflclients wyy.. can be
accelerated to a large extent 1f one takes as the initlal approxi-
mations not the initial values of the unknown funetions, but some
functions x¥(t) that are closer to the exact soclution. The closer
these funct%ons are taken to the true solution, the more rapidly
will fthe limiting functions xi(t) be attained, with the degree of
precision selected for the computations. In thls case, the solu=
tion of the system of differential equations and the coefficients
of the polynomial are also determined by formulas (11) and (12),
where instead of the matrix [Xy] we must take the matrix [x*],
whose elements are xﬁJ = X (tj§

Integration of equations of motion of the space object. Let us
consider the appllication of the numerical method of successive
approximations to integrating the system of differentlal equations
of motion of a space object over the section of its injJection into
orbit,

The equations of motion of the space object in general form
can be represented thusly (in projections onto the axeswefithe
Cartesian system of coordinates with the origin at the launch
polint}s

V{ = fi (t, M» X Y, 7, Vx’ Vy' VZ)’

r:i:Vii i=x, y 2 (1}4)
M =g 1), |

where € 1s the flight time; V i1s the yelocity of the space object;
r is the radius-yector (ry = x, ry = Ry *+ ¥y, vz = 23 Ry 1s the
radius of the Earth at the launch poing) and M 1s the mass of
the launch vehicle hearing the space ohject.
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The algorithm far integrating the equations of motion
presented below does not depend on the form of the right sides
of the differentlal egquations, therefore the functions fy are
not expanded here. It is only required that these functions
satisfy the conditions of the theorem of the exlstence of unique-~
ness. The explicit form of the right sides of differential
equations (14} is defined by the speclfic problem and is presented
in numerous sources, for example, in [5].

Under the above-presented integration algorithm, the solution
ofisystem (14) 1s best sought by beginning from some initial
approximation. In thils case, the asslgnment of the initial
approximation reduces the defining the so~called "reference" tra-
Jectory for which we take the trajectory of motion of the:space
object in a vacuum with a constant gravity field. The laws of
variation of mass and the pitch angle for the "reference" trajec-
tory are approximated by linear functions. With these assumptions,
the differential equations of motion are easily solved 1n quad-
ratures. The final expressions for computing the "reference"
trajectory are not given in.this article, since theilr derivation
does not pose fundamental difficulties.

This approach permlts, with minimum machine time, computing
the values of the kilnematic elements of the trajectory, allowing
an error of 10-15%, which is wholly acceptable for the initial
approximation.

The next problem is to integrate the egquations of motion on
the basis of the "reference" trajectory adopted.

Suppose that at some timesinstant ty the motion of the /80
launch vehicle carrying the space object_is characterized by
the vectors of welocity Vy and position Ty and by mass My. It
is required to determine %o the desired pre01sion the velocity,
position, and mass at the time interval (ty, t'] satisfying
the system of differential equations .(14).

Let us represent the right sides of the differential equations
of motion in the form of a sum of two components, one of which
characterizes the motion of the space object along the "reference®
trajectory, and the other 1s a correction corresponding to the
difference of the actual and "reference" trajectory; let us
integrate them in the limits form ty to t, and we get

V;“'_"V:—E_AVIQ rtzr:—!_Arh M:M*-—}-All’i."

The initial conditions here gre taken into account in the
integrals of the "reference" trajectory:ﬁ%, r%,‘and VE
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Uslng the above—presented method, we can define the elements
of the trajectory in the time 1nterval [ty, t'] by the following
functions:

7 1

- Ve=Vi+ Z 'L"H”l
o :
r;= r; + A2 ihr Tht2,
éo (4~ )+ 2D f (15)
M= M b 3 2 e,
k=0 )

To compute the coefficients of the polynomials, we use the
expressions

Wipr = ‘\ 14 kz&lf

ifrs
f==0

(16)
Oy = ;23 44;&[}!14

=0

The mass consumption per second M depends only on the flight
time; therefore the coefficlents wy are defined by expression (16),
if the corrections AM; to the "reference" value of the per-second
consumpticn M* taken at the interpolation nodes, were computed:

AM; = M(t) — M.

The corrections to the acceleration components Aﬁi-r are
functions of the kinematic trajectory elements and therefore cannot
be found directly. The recurslon relations

Vol = (V¥ + A [AVe ] [E3],
[ro] = [r*] 4 KAV [ER), (17)
[AVvoi] = Vel — V7], |

are used to compute these corrections, where [V] and [r] are
rectangular matrices of the type 3 x m, with the following form
(the indexes # and v in the notatlon are omitted for simplicity:

1’:0 l/xl e L’xn1 r
Vi=|Vi Vi .o V],

l{zn Ifz] .. L/zrn
X Xy e X,
=R+t Ry+th ... Ryt+ynl.
2y 2, ... 2y
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The matrix elements [V,_,1 are computed by Eqs. (1K) for the /81
values of the kinematic elemEﬁts-Inglj'and‘[rv;l]'and the cor-

responding values of flight time and mass. The iterative process
described by expression (17) is continued up to an v = r such

that the conditlon |gMBX[ <:e 1§ isatisfled,.where ¢ is the allowable
error of the computation of acceleration; IEmaX[ is the modulus

of the largest of the matrix elements |£| characterizing the

change In the acceleration components at the interpoclation nodes

in a single approximation

Thus, ihtegration of the system of equations of motion
according to the proposed algorithm provides for carrylng out the
fellowling operations: computing the "reference" (simplified)
trajectory from analytic expressions; determining the coefficients
of polynomials by successive approximations in accordance with
the recursion relations (17); and setting up the time functions of
the trajectory parameters according to formulas (15).

Realization of the proposed algorithm of trajectory computation.
The main eriterion characterizing the sultability of a particular
calculation method is providing minimum machine time for the assigned
precision of trajJectory element computation.

When this algorithm is used, the computation time and the
integration precisilon are determined by three parameters, which
depend on the nature of the behavior o¢f the right sides of the
differential equations: the order of the interpoliation quadrature
formula m, the number of successive approximations r, and the
integration interval At.

Below are presented several general considerations dealing
with the assignment of these parameters when computing, on a M-220
high-speed digital computer, the trajectory of the insertion of a
space object into orbit.

It is obvious that the methodologleal error in integration
decreases with increase in the order of the guadrature formula m.
In addition, for large m errors caused by the inevitable rounding
in computing the right sides of the differe?t'al equat%ons and
the elements of the integration matrices [Eml ] and [E{ 2)] pegin

to have an effect. For this class of trajectories, the seventh-
order quadrature formula is preferable. When m = 7, the elements
of the integration matrices are of an order not exceeding the
computer capaclty and, therefore, the rqunding errors in computing
the elements are absent‘ while the errors in rounding the right
sides are negliglbly small

oot
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The number of approximatlons requlred for the asslgned cal:
culation precision depends to a large extent on the specific
problem. In order to avoid possible errors, the selection of the
required number of approximations 1s intrcduced into the integra-
tion algorithm. In this case, the process of successive approxima-
tions continues until two nelghboring approximations of the
trajectory elements are coincident in the limits of the assigned
precision. Figure 2 presents the maximum errors of computation
as a function of the number of successlve approximations for a
hypothetical medium-class AES [artificial Earth satellite]. From
an examinatlion of these data it follows that in practice three
approximations are sufficient for the atmospheric section and two
approximations for the extra-atmospheric section; the computation
errors here do not exceed 0.001 m/sec in veloecity and 0.1 m in
pasition.

With these conditions for selection of the parameters m and r,
the required calculation precision is uniquely ensured by the
selecticon of a single parameter ~- the integration interval At.

The parameter At 1s a quantity that is analogous to the integration
step in other numerical methods.

The functions gilven in Fig. 3 show that for a computation error
of not more than 0.01 m/sec in wdlocity and 1 m in position, the
step At is approximately 20 sec when computing the atmospheric
section, and 250 sec when compufing motion in the wvacuum.

Under the same condlitlons, the time for computing the
trajectory by the numerical method of successive approximations
is reduced compared with the time of computation under the Runge~ /82
Kutta method by approximately a factor of two for the atmospheric
section, and by a factor of 20 for the extra-atmospheric section.

The computation time was reduced owing to two factors. First
of all, the actual trajectory of the object was computed relative
to the "reference" trajectory which consliderably reduced the size
of the right sides and, therefore, made 1t possible to increase the
integration step. The time outlays for computing the "reference"
trajectory, expressed in simple analytic form, are negligibly
small compared with the total ccomputatlion time. Secondly, the
interpolational quadrature formula on the basls of which the
integratlon process was constructed has a residual term that
is much smaller than the resldual term 1In the Taylor series
taken as the basis of the Runge~Kutta method.

Let us polnt out seVeral'featurés'of the realization of the
proposed algorithm.
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aVmseen sk, g

. The use in thls algorlithm
. of a quadrature formula for
. finding integrals with a vari-
able upper limit makes 1t
possible to arrive at the
approximate solution both 1in
numerical and analytic foérm.
Therefaore each trajectory
parameter must be represented
by an analytlic expression of
two terms. The flrst ferm
is the expression for the
parameter of the "reference"
trajectory, and the second
is a polynomial of m degree,
approximating the difference
: in the parameters of the true
\ and "reference" trajectories.
Thus, as the result of compu-

Flg. 2. Errors in computing tation, the kinematic parameters
velocity AV and altitude 4h of the object trajectory can be
as a function of the number obtained in compact form. To
of successive approximations: do this, it is sufficient to
—— motion in the atmosphere specify the formula far each
-—— motion in vacuum trajectory element and the

table of the parameters of
Key: a. m/sec the "reference" trajectdory and

the polynomisl coefficients.

An important feature of the proposed method is the option of
simple monitoring of the correctness of the solution on a digltal
computer. A double solution of the problem followed by a com-
parison of the results or of control sums is a fairly widespread
procedure of monitoring. This procedure involves large ocutlays
of machine time, however it 1s necessary when solving problems of
large scope. When the method of successive approximations 1s used,
the necessity of double computation disappears, since the computa-
tion is conducted until two successive approximations coincide
within the limits of the assigned precision, as a result of which
random diglital computer misses can be corrected by the following
approximations.

Upornn examining this algorlthm coverall, we can note 1its
following advantages:

—-— the method of successive approximations markedly shortens
the time needed to compute the 1Injection trajectory;
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Fig. 3. Errors in computing
velocity AV and altitude Ah
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—-- the method of successive

approximations is conveni-
. ent for cngoing monitoring

of the correctness of the
solution when computing
the trajectory on a digital
computer and makes it
possible to avoid double
computaticon; and

—— the results of computing
the trajectory by the method
of successlve approxima-
tions can be represented
as compact analytic
expressions and as a
table of coefficients.

The proposed algorithm also
proves very effective when used
Tor other problems of space
balllistics, for example, for the
problem of determining the
optimum regime of the injection
of a space obJect Into orbit,
however this problem is beyond
the scope of this article and
is a subject for special con-
sideration.
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ANATLYTIC~-NUMERLCAL METHOD OF COMPUTING
ATTITUDE CHANGES OF SIMILAR AES

A.A. Krasovskiy, Ye.T. Bushuyev, E.P. Kompanlyets,
and A.I. Vasil'yeva

The proposed analytic-numerical method of computing attitude
changes of similar AES, with allowance for the noncentrality of
the Earth's gravity fleld and the atmospheric density, when per-
formed with a computer affords a considerable saving in machine
time (by a factor of 10-15), with satisfactory precision, which
is Important when solving problems associated with the long-
term prediction of AES atfitude changes.

The basis of the method is the familiar procedure [3] of
two-cycle integration of the differential equations of motion in
osculating elements: integration in the limits of a single revo-
lution (internal cycle) and integration by the number of revolutions
(external ecycle).

To ensure speed in computations, integration in the internal
¢ycle is replaced by computation using finite formulas with
reference to short-periodic fluctuations in flight altitude owlng
to the noncentrality of the Earth's gravity field and the non-
sphericlty of the Earth and the dynamic model of atmospheric
density that reflects variations in the density of a global nature
(1l-year cycle, 27-day and semiannual varlations, and geomagnetic
effects).

These increments in the elements of orbital motion in a
revelution are the starting basis for integrating the equations
off AES motion 1n finite differences -- by the number of revolutions.
External integration is carried out by one of the méthods proposed
in [4]. At éach step of the external integration, the elements
of orbital motion are refined by the value of the long-periodic
fluctuations due to the noncentrality of the Earth's gravity fileld. /84
Short-pericdic fluctuatlions in the flight altitude of an AES
in a revolution. For the motion of AES in elliptical and circular
orbits, the mechanism of the perturbing action of the atmospheric
density differs: in near-circular orblts the satellite is decelerated
at viftually all peints, but in elliptical orblts —-- 1n the region
of the orbital rerigee, accordingly, for near-circular obbits with
eccentricity e < 0.02, allowing for fthe short-periodic fluctuations
in altitude was made over the entire revolution, and for elliptical
(e > 0.02) -- only at the perigee.
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In deriving the formulas, allowahce was made for the perturbing
action only of the second zonal harmonlc of the expansion of the
Earth gravity potential. In several studies, for example [5],
it 1s shown that higher harmonics lead to negligible short-periodic
Tluctuations. The perturbing action of the atmospheric density
on the flight altitude within the limlits of a single revoluticn
was not taken into account.

" Nearwcilreular orbits (efi'0.0a}. Let us write the instan-
taneous flight altitude in near-circular orbits in the form

h=r*—Re+Ahper (1)

where r is the radlus-vector of the satelllite when moving in an
unperturbed Keplerian orbit; Ry is the equatorial radius of the
Earth; and Ahpepr are the perlodic fluctuations in AES flight

altitude in a revolution, caused by the noncentrality of the
field and the nongphericity of the Earth.

Periocdiec fluctuations of the radius-vector owing to the field
noncentrality Arper are defined by the familiar formula (2]1:

4

_ 1l e 3 . . '
A ep = 2_;.:'_;1‘[(2_"4_5'“‘)(1—COSH)'F%-sinEisirﬁu A (2)

where £ and y are constants of the attracting fileld.

With reference to the instantaneous value of the Earth'sirradius
at the satellite track point:

Ra.': Re(l —asin®isin? u), (3)

where a 1s the polar contraction of the Earth, we get from (2)
and (3):

= 7 1 - - |
Ahper' Bsin*u — C (1 —cosu).| (%)
Here
B=(’%a——§p-%)sin2f; ' (5)
= 2 12 ey
C= 7 K (l 3 sm"’t).; (6)

Formula (%) glves good agreement with an exact computation (
(about 2%) for e < 0.02; for larger eccentricities, the error in
altitude determinatlon becomes comparable with the value of the
correction itself.
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Elliptical orbits (e » 0.02). The altltude at the perigee
for a flight in an elliptical orbit is determined by the formula:

hy, = (a + a, e - be, er) ~ Ry (7)

where Ry, = Rg (L - asinajJSin.:u); Aaper and Ae,., are the periodic

osclllations of the semimajor axis and the eccentricity due to the
noncentrality of the Earth gravity field.

Let us represent the rate of change of the parameters a and 1
in the form

_de_= _ e+ 2cos(u—a) +ecos? (u—w |
T Y0 {SSlﬂ(u ) + ecos {4 —w) -+ | T]' (I (8)
d 2 .
E‘:—:p pp. {Sesm(u-—m)'—[—T[l—}—ecos(u—m)]}, ; (9)
| - |
Y= I sin u ~1; ' (10) Zﬁ
o T e w—w) v J
S=_S_CL:5§.~(35in2usin2i—-l): | (11)
T 3 o8 Gy sin g (12)
CalRE (. o ‘
w7=_%, ﬁesmusm&. | (13)
Using expressions (8) - (13), after transformations we get:
de 3 >nR2 .
W =T Ei— leasink (4 — o) + Gy cosk(u—w)), | (1)
da =3 ZuRe“ I
= a—(r_eT‘_[nksmk(u—m)+Ekcosk(u~w)] [ (15)
where
nﬁse(1++é2)+—~e(3+eﬁ)cl. ;
n2=se2+(1+%82)61. |
l 9 :
=8+ —e(l 4+ e, f
; 3 ( 3 )1 o (16)
‘14:_2—92011 ]
= e |
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9 1
§3=Te(l+_Te2)cz, (17)
Q:-g—e”cz, | |
§5=-%rﬂ%;. |
/ [
=Sl o)Ll +3eg, |
sezse—!——ﬁ—ecl,
1 | 17
&= 8 (7 + Tﬂ’)ep (18)
3
842-'2—-96'1,
e,,=%eecl;
i
b= (1+5e)a | /86
5
§2=T€CQ,
1 17
G= (T+ ) |
: | (19)
|
§5=—%—e§2. |
|
Here |
(20)

3 .
—1 oo etz o a
s=1 o SNt ¢ =sinficos2w; ¢, = sin®/sin2w, |

Integrating expressions (14) and (15), and considering that for
the perigee u = w, we get the flnal expresslons for determining
the pericdic fluctuations of parameters a and 1:

5

Aanepz—Q%_a(T_l—'_T-g)i'“Z%{—'nk(l""COSkm)"&“EkSinkm]’; (21)
k=1 !
1 ‘
{ H '

Benep = =2 b 3 L s (1 —coskw) + sinkol. | (22)

=]
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The methodological error in determining h, based on formulas
(1), (21), and (22) is not more than 5%.

- Long=periodic fluctuations in orbital elements. We will
consider long-periodic fluctuatlons of elements of orbits whose
attlitude changes determine the lifetime of the satellite, i.e.,
the semimajor axis and the eccentricity.

Long-periodic fluctuations have been analyzed in several
studies. In particular, Kozan and Brauer derived analytic
expressions for orbital perturbations caused by the influence
of zonal harmoniecs up to 14, Incluslively. Kaul has developed
an analytic theory of tesseral harmonics. A compilation of the
formulas derived by these authors and a description of a program
for the differential refinement of orbits DOI used in the United
States are given in [5]. In the study [6], convenient formulas
for long-periodic perturbations owing to the second harmoniec
were obtalined on the basls of the problem of two fixed centers.
A similar analysis of long-periodic perturbations for the case
of near-c¢lrcular orbits with reference to six harmonics is given
in [7]t8%nd wlth reference to tesseral and sectorial harmonics
-- in .

With reference to the stringent requirements on the speed of
the computatlons, we limited ourselves to examining only the most
ezgsential perturbations caused by the effect of two, three, and
four.zonal harmonics, which 1n general cases 1s applicable for
near Earth satellifes.

Long-periodic oscillations of the semimajor axis a and
eccentricity e 1In the proposed method are used in the form of
the corrections Aag and Alg as the integration step.

Near-circular orbits (e < 0.02). For near~circular orbits,
the following formulas were adopted [7], yielding the change
in the parameters a and e in a single revolution:

—L.i.?..-— =A4—'(/13_"4;;)1\', :

dn

Sk A 4 (A, + Ay 4

N T 2 : (23)
o= A

where

g=ecosw; k=¢sinw; a=—5—;
Re ! (2i)
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A=§L7m%_@w-%m%. <
Ay = :23—-?_-_; (55, — 4) Cgy + 32 = (38051 — 445s7) C3p + 3‘
+_i_§_p-:(16—6251+495)6m. !
A= % pT( AB + 46s, + 1557} C + —~= 9_4 (65, — 757) Cy, | (25)
A‘_—,-f—%sme—Ssl)C‘sﬂ.
b= 5 L Gy —HCh

p=a(l —e); s =sini; ! (26)

N 1s the integration step by revolutions.

The eccentricity and the argument of the latitude of the
perigee of a perturbed orbit are computed 1n terms of g and k
using the formulas

e i
e=V@+ & m—arcsm—‘:‘— !

l (27)

Elliptical orbits (e > 0.02). The following formulas [5,) 6]
were adopted for elliptical orbits:

a) owing to the second zonal harmonic

1
a=VetdltecosofT+ecosa) (=) —sb I —S@=DI,  (29)
where S ﬁ .
_ e{cos oy — cosw) 1 e (30)
pr=1 14+ ¢ecosm : Elz-p_ T'f;_' f

a.and e, and ap and ep are the unperturbed and perturbed values
of the orbital parameters, respectively; w and wy are the
argument of the latitude of the orbital perigee at the initial
point and at the .erndpoint of the integration step, respectively;

b) eowing.touthe third zonal harmonic

— A= L CsR
Deg==—"= -C—“%smtsmm (31)
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The methodologlcal error in formulas (23), and (27) - (29)
dees not exceed approximately 5%.

- Equations of motion. The expressions obtained above for
the representation of the flight altitude of AES in a revolution,
and for the long-periodic oscillatilons in orbital elements, as
well as the results of the work [1] make it possible to represent
the changes in the orbital elements in a single revolution in /88
the form: '

AQ = AQ, +AQy; (=8, 0,4, a,¢x, 1, (32)

Where AQg and &Qp are the perturbations of the orbital elements
owing to the noncentrality of the Earth gravity field and the
atmospheric drag, respectively. '

For convenience in analysis, in addition to the orbital

eccentricity e, we bring into consideration the linear eccentricity
X = ae.

The increments of individual elements owing to each perturbing
factor are defined by the formulas:

'AQg=——if—-f—lcosi; AQ =0, | (33)
=-—ir'---8— 27— : = ' ‘. ! J.\!
Aog= - == (Geos*i—1); Aw, =0, 413
Al, = Al =0, ‘
=B | (35)
{TN" e < 0,02,
Aa, =
\ an_V—a ' e>01021 ! (36)
{w‘ ,2.:1 (1+ E)’/ .
/ — 2 e cos 2
Aay aﬁj (1 — ecos £/ pdE, (37)
dg \2 E 12
Vot So) + e+ S e e<o0
ﬁ\e‘g ep -+ Aeg—e (38)
— e> 0,02,
2n -
Af = == )
Ve ove (38a)
Atg=——%— -;—[3——3—sin2i——ec05m(l-—5sin2z')+
+'2—7e2(1-—%sinﬁf)+-§~e=c052m(1—-Zi-sinzi)], | (39)
on 1 £y
— s A tecosE)’
A%p aﬁé {1 — ecos E)'/: (cos £ 4 ¢) pa, (40)
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where

5 — FSuCx | : (Lll)

F:(I—- ”‘;"’ cosz‘)a; (42}

Wy 1z the angular rate of rotation of the atmosphere.

d dk ‘ .
The quantitiles Qs %‘A%,'j%n Al g%— are defined by formulas

(23) and (29) - (31).

Equations :(37) and (40) are the principal ones, defining the
secular changes in orbit under the effect of atmospheric decelera-
tion. An analysis of these eguations for different types of
orbits, wlth allowance for the effects of atmospheric compression
and altitude scale varliability, is given in [1]. However, one
of the main assumptions in this work is the neglect of shorts
periodiec oscillations in the instantaneous flight altitude owing
to the noncentrality of the Earth gravity field. The effect of
fleld noncentrality shows up most strongly for near-circular orbits;
for elliptical orbits, the results of D. King-Healey are wholly /89
sultable if the perigee altitude is used in the calculatilon, with
allowance for the short-periodic effects (4) and (7).

Elliptical orbits -~ +v=2 =3(€>002 . The formulas from the
H 1

study [1] were taken for elliptical orbits; these formulas correspond
to the case of deceleration in a compressed atmosphere with a
variable altitude scale:

Aay = Sy (Aya+ dga + Aga), (43)
Axpg = Sy (Apx -+ Agx + Agx), ‘ .. (L“\l)

where -3
S, = 2';1('5:12;);&2_l exp [— (v; -+ ccos 2w)] exp (—-f;—f‘ : - J (45)

f_\.la=IO—}-2611+72—32(]"+12)—5~Te3(311§—]3); ’ (46)
B = b2 (Bl — 4y + Iy + e (— 4y Thy— 4l + 1))+ ‘
+ 2 e (Tl — 121, 4 81, — AL+ L)]; | (47)
A = 0{12 + 2], — ¢ (31,4 21, — 1714)1 cos 26 -

4 Uy 2edy + 11y~ e (I, — 31y)] cos do); ] (48)
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1 l
I+ e(3fo+12)+Te2(1111+13)+~1’6—eﬂ(710+812+14);( (49)

I
Azx—--z~bx2“

Ay

i

~ ot T~ 4L+ 1) 4 e (197, — 287, + 127, — 4/, + |

1,
+ 1) g (— 4/, 781, — 48], + 171, — 41, + ]5)]; {(50)
L 1 !
Ay = Tc[]l + Is‘_""z“ E([o—-—ﬁ‘!z—-314)——%_82(16[1_2913__ ‘
— i
IlfﬁJJCOSQm—i-Tcz{Qll—i-8(3!,,-1— 12)+[13+15~;_e(312_514_
— 5!8)] cos 4m} ; | | (51)
¢ = gy 'rsinti; (52)
- dlnp -
Hl‘l-'__" dhn ’ v1=aeHnl; b—_‘—_Q;;a?' H (53)
l+ "é—‘]-lalzsz _
Q= =—=———V/Sexp(—s); - (54)
Vit |
dH, . .
Pa= 7~ 1s the rate of change of the altitude scale;
is the atmospheric density at the altitude
by = hy -+ AH; (55)

I = I-(vl) are the Bessel functions of the imaginary argument;
and s %he relative error in specifying the scale of altitudes H.

The coefficients @:.and A were selected so as to minimize the
errors In Aa, and Axp owlng to lmpreclse knowledge of the altitude
scale characgerized by the relative error s. PFor the interval

08 <s <125 (56)

the optimal values of Q and A are determined by the formulas

» = 0,5+ 0,33u,, (57)
Q = 0,596 — 0,25, (58)

Near-~circular orbits, v= < 3 (e < 0,02).

i

For near—circﬁlar orbits, the change ¢f parameters a and x in
a revolution 1s represented as the sum of the principal ferm that
allows for deceleratlon in a spherically symmetrlc atmosphere with
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a variahle altltude scale, and a small correction that allows for
the noncentrality of the Earth gravity fleld and the nonsphericity
of the Earth:

Aap = S;A.a 4- A,

(59)
Axp =82A1x+Akx‘ (60)
where -
S, = 2n6azth'l exp (—wvyexp X
Aa
e (61)

: On analcgy with the
4.4 case of elliptical orbits,
the parameters @ and A are

F introduced to compensate for
i ‘ possible errors in the
,f*‘—“f:::xcij assignment of the altitude
- 3 scale. Thelr optimal values

; are shown in the figure for
. the range of relatlive error
.W (56).

! Based on formulas (37)
and (40), the expressions
for the corrections Axa and
Optimal values of the coefflicients ApX can be represented as:
Q@ and XA for the range of relative

error 0.8 < 8 < 1.25 as a functlon

of wv.
b= [ Urem b g, § eemnts T (62)
“—-ECOSE}‘/ 5 (l—ecosf}‘fz d s
Apr— g6 | | (Lecos B -
* .j {1 —ecos Ey'fe (cos £ 4 ¢} pdE —
g
2a . | (63)
N {1 4 ecos £)': ! : |
j m)‘T(COSE‘TG)pdE},
where ) |
= prexp () g |
—_— \ (61)
p = pexp (B ;' |
| p— — 2iperT . (65)
‘ _ per. . |
(66)
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Expanding Iin a power serles and considering only the linear
and quadratic terms in B, we can represent expressions (62) and (63)
as:

on

o oes (1 L ecos £y — B dE .
Aa = aﬁ,s (1 — ¢ cos £y p([ﬂ+ 2) ' f (673}
0
e " (1 -+ ecos EY'/s - B ‘E"
Akx— aa.f (l—ecosE)l’" (COSE+€)p(ﬁ+ 2 )d n (68)

Converting, in formulas (67) and (68), to a new independent /91
variable -- the frue anomaly n -- after integration and subsequent
transformations, we get to a precision of about 2%:

Aga = na*Sp, (1 + e)lf,f_-\-’?)- P, : (69)
A = natdp, ST 2eg 4+ (1 — o)), ' (70)
where v B2 i—e '
LR : (71)
(p:IO(B—QC)+QI;Ccosm—Blacoszw—Tlﬁ{%jo[(g_gc)z+‘\

-+ —é—-(B?+4CE)] -+ B2 (—4L f,cos 4w — lzcos2co) + 4C[C(—li~1;_.cos2m—-

[
— llcosm)—-%B[—;—(ll—}- 14} cos wcos 2w — £, cos 2w — Ilcosm”};=,

f=Cl,cose -+ II[B(I -—-—;_—cosm)-— QC]—Clzcosw—;—Ichosm—~ (72)
—Tjj,—{z[% B + C(SC—QB)} I+ [C2~— B (B — 2C)] (I, + 1) cos 20 + ;
+ 2C (B—2C) (Iy + I} cos @ - —— B (I, + I cos 4o — BC (I + 2/, -+
=+ 1) cosmcost}; | (73)
Iy=1,(v); | (7”)

See (5) and (6).:for |B.and C.

We must note that slince the origin of reference of the short-
periodic fluctuations in flight altltude (4) corresponds to the
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instant the ascension node is traversed, to compute the increments
Aka and Apx by formulas (69) and (7Q), we must use as the starting
data the orbital elements for this same instant of time. In
particular, the perigee altitude is computed by the formulas

f =g(]._.e)____R R
p .
© (75)
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